【題目】如圖,D AB 邊上的中點(diǎn),將△ABC 沿過點(diǎn) D 的直線折疊,DE 為折痕,使點(diǎn) A 落在 BC F處,若∠B=40°,則∠EDF=_____.

【答案】40

【解析】

先根據(jù)圖形翻折不變的性質(zhì)可得AD=DF,根據(jù)等邊對等角的性質(zhì)可得∠B=BFD,再根據(jù)三角形的內(nèi)角和定理列式計算可得∠BDF的解,再根據(jù)平角的定義和折疊的性質(zhì)即可求解.

∵△DEFDEA沿直線DE翻折變換而來,

AD=DF,

DAB邊的中點(diǎn),

AD=BD,

BD=DF,

∴∠B=BFD,

∵∠B=50°,

∴∠BDF=180°-B-BFD=180°-40°-40°=100°

∴∠EDF=(180°-BDF)÷2=40°.

故答案為40.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣3a(a≠0)與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,2),連接BC.

(1)求該拋物線的解析式和對稱軸,并寫出線段BC的中點(diǎn)坐標(biāo);
(2)將線段BC先向左平移2個單位長度,再向下平移m個單位長度,使點(diǎn)C的對應(yīng)點(diǎn)C1恰好落在該拋物線上,求此時點(diǎn)C1的坐標(biāo)和m的值;
(3)若點(diǎn)P是該拋物線上的動點(diǎn),點(diǎn)Q是該拋物線對稱軸上的動點(diǎn),當(dāng)以P,Q,B,C四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時,求此時點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在銳角三角形ABC,直線lBC的中垂線射線m為∠ABC的角平分線,直線lm相交于點(diǎn)P.若∠BAC=60°,ACP=24°,則∠ABP的度數(shù)是( )

A. 24° B. 30° C. 32° D. 36°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD是BC邊上的高,BE平分∠ABC交AC邊于E,兩線相交于F點(diǎn).

(1)若∠BAC=60°,∠C=70°,求∠AFB的大小;

(2)若D是BC的中點(diǎn),∠ABE=30°,求證:△ABC是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣2x+10與x軸,y軸相交于A,B兩點(diǎn),點(diǎn)C的坐標(biāo)是(8,4),連接AC,BC.

(1)求過O,A,C三點(diǎn)的拋物線的解析式,并判斷△ABC的形狀;
(2)動點(diǎn)P從點(diǎn)O出發(fā),沿OB以每秒2個單位長度的速度向點(diǎn)B運(yùn)動;同時,動點(diǎn)Q從點(diǎn)B出發(fā),沿BC以每秒1個單位長度的速度向點(diǎn)C運(yùn)動.規(guī)定其中一個動點(diǎn)到達(dá)端點(diǎn)時,另一個動點(diǎn)也隨之停止運(yùn)動.設(shè)運(yùn)動時間為t秒,當(dāng)t為何值時,PA=QA?
(3)在拋物線的對稱軸上,是否存在點(diǎn)M,使以A,B,M為頂點(diǎn)的三角形是等腰三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, AD 為△ ABC 的中線, BE 為△ ABD 的中線.

(1)∠ ABE=15°,∠ BED=55°,求∠ BAD 的度數(shù);

(2)作△ BED 的邊 BD 邊上的高;

(3)若△ ABC 的面積為 20, BD=2.5,求△ BDE BD 邊上的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯誤的是()

A. 兩個面積相等的圓一定全等

B. 全等三角形是指形狀、大小都相同的三角形

C. 斜邊上中線和一條直角邊對應(yīng)相等的兩直角三角形全等

D. 底邊相等的兩個等腰三角形全等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣4(a≠0)與x軸交于A(4,0)、B(﹣1,0)兩點(diǎn),過點(diǎn)A的直線y=﹣x+4交拋物線于點(diǎn)C.

(1)求此拋物線的解析式;
(2)在直線AC上有一動點(diǎn)E,當(dāng)點(diǎn)E在某個位置時,使△BDE的周長最小,求此時E點(diǎn)坐標(biāo);
(3)當(dāng)動點(diǎn)E在直線AC與拋物線圍成的封閉線A→C→B→D→A上運(yùn)動時,是否存在使△BDE為直角三角形的情況,若存在,請直接寫出符合要求的E點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某市初三學(xué)生的體育測試成績和課外體育鍛煉時間的情況,現(xiàn)從全市初三學(xué)生體育測試成績中隨機(jī)抽取200名學(xué)生的體育測試成績作為樣本.體育成績分為四個等次:優(yōu)秀、良好、及格、不及格.

體育鍛煉時間

人數(shù)

4≤x≤6

2≤x<4

43

0≤x<2

15


(1)試求樣本扇形圖中體育成績“良好”所對扇形圓心角的度數(shù);
(2)統(tǒng)計樣本中體育成績“優(yōu)秀”和“良好”學(xué)生課外體育鍛煉時間表(如圖表所示),請將圖表填寫完整(記學(xué)生課外體育鍛煉時間為x小時);
(3)全市初三學(xué)生中有14400人的體育測試成績?yōu)椤皟?yōu)秀”和“良好”,請估計這些學(xué)生中課外體育鍛煉時間不少于4小時的學(xué)生人數(shù).

查看答案和解析>>

同步練習(xí)冊答案