【題目】為了解某市初三學(xué)生的體育測試成績和課外體育鍛煉時(shí)間的情況,現(xiàn)從全市初三學(xué)生體育測試成績中隨機(jī)抽取200名學(xué)生的體育測試成績作為樣本.體育成績分為四個(gè)等次:優(yōu)秀、良好、及格、不及格.
體育鍛煉時(shí)間 | 人數(shù) |
4≤x≤6 | |
2≤x<4 | 43 |
0≤x<2 | 15 |
(1)試求樣本扇形圖中體育成績“良好”所對扇形圓心角的度數(shù);
(2)統(tǒng)計(jì)樣本中體育成績“優(yōu)秀”和“良好”學(xué)生課外體育鍛煉時(shí)間表(如圖表所示),請將圖表填寫完整(記學(xué)生課外體育鍛煉時(shí)間為x小時(shí));
(3)全市初三學(xué)生中有14400人的體育測試成績?yōu)椤皟?yōu)秀”和“良好”,請估計(jì)這些學(xué)生中課外體育鍛煉時(shí)間不少于4小時(shí)的學(xué)生人數(shù).
【答案】
(1)
解:由題意可得:
樣本扇形圖中體育成績“良好”所對扇形圓心角的度數(shù)為:(1﹣15%﹣14%﹣26%)×360°=162°
(2)
解:∵體育成績“優(yōu)秀”和“良好”的學(xué)生有:200×(1﹣14%﹣26%)=120(人),
∴4≤x≤6范圍內(nèi)的人數(shù)為:120﹣43﹣15=62(人);
故答案為:62.
(3)
解:由題意可得: ×14400=7440(人),
答:估計(jì)課外體育鍛煉時(shí)間不少于4小時(shí)的學(xué)生人數(shù)為7440人.
【解析】(1)直接利用扇形統(tǒng)計(jì)圖得出體育成績“良好”所占百分比,進(jìn)而求出所對扇形圓心角的度數(shù);
(2)首先求出體育成績“優(yōu)秀”和“良好”的學(xué)生數(shù),再利用表格中數(shù)據(jù)求出答案;
(3)直接利用“優(yōu)秀”和“良好”學(xué)生所占比例得出學(xué)生中課外體育鍛煉時(shí)間不少于4小時(shí)的學(xué)生人數(shù).此題主要考查了扇形統(tǒng)計(jì)圖以及利用樣本估計(jì)總體,正確利用扇形統(tǒng)計(jì)圖和表格中數(shù)據(jù)得出正確信息是解題關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D 是 AB 邊上的中點(diǎn),將△ABC 沿過點(diǎn) D 的直線折疊,DE 為折痕,使點(diǎn) A 落在 BC 上 F處,若∠B=40°,則∠EDF=_____度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,E為CD中點(diǎn),連接AE并延長AE交BC的延長線于點(diǎn)F.
(1)求證:CF =AD;
(2)若AD=2,AB=8,當(dāng)BC為多少時(shí),點(diǎn)B在線段AF的垂直平分線上?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以x為自變量的二次函數(shù)y=x2﹣2(b﹣2)x+b2﹣1的圖象不經(jīng)過第三象限,則實(shí)數(shù)b的取值范圍是( )
A.b≥
B.b≥1或b≤﹣1
C.b≥2
D.1≤b≤2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列等式:
第1個(gè)等式:a1= = ﹣1,
第2個(gè)等式:a2= = ﹣ ,
第3個(gè)等式:a3= =2﹣ ,
第4個(gè)等式:a4= = ﹣2,
按上述規(guī)律,回答以下問題:
(1)請寫出第n個(gè)等式:an=;
(2)a1+a2+a3+…+an= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ACB中,∠BAC=90°,AB=AC,分別過B、C兩點(diǎn)作過點(diǎn)A的直線l的垂線,垂足為D、E;
(1)如圖1,當(dāng)D、E兩點(diǎn)在直線BC的同側(cè)時(shí),猜想,BD、CE、DE三條線段有怎樣的數(shù)量關(guān)系?并說明理由.
(2)如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
(3)如圖3,∠BAC=90°,AB=25,AC=35.點(diǎn)P從B點(diǎn)出發(fā)沿B→A→C路徑向終點(diǎn)C運(yùn)動;點(diǎn)Q從C點(diǎn)出發(fā)沿C→A→B路徑向終點(diǎn)B運(yùn)動.點(diǎn)P和Q分別以每秒2和3個(gè)單位的速度同時(shí)開始運(yùn)動,只要有一點(diǎn)到達(dá)相應(yīng)的終點(diǎn)時(shí)兩點(diǎn)同時(shí)停止運(yùn)動;在運(yùn)動過程中,分別過P和Q作PF⊥l于F,QG⊥l于G.問:點(diǎn)P運(yùn)動多少秒時(shí),△PFA與△QAG全等?(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,從①∠1=∠2 ②∠C=∠D ③∠A=∠F 三個(gè)條件中選出兩個(gè)作為已知條件,另一個(gè)作為結(jié)論所組成的命題中,正確命題的個(gè)數(shù)為( 。
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解某學(xué)校初四年紀(jì)學(xué)生每周平均課外閱讀時(shí)間的情況,隨機(jī)抽查了該學(xué)校初四年級m名同學(xué),對其每周平均課外閱讀時(shí)間進(jìn)行統(tǒng)計(jì),繪制了如下條形統(tǒng)計(jì)圖(圖一)和扇形統(tǒng)計(jì)圖(圖二):
(1)根據(jù)以上信息回答下列問題:
①求m值.
②求扇形統(tǒng)計(jì)圖中閱讀時(shí)間為5小時(shí)的扇形圓心角的度數(shù).
③補(bǔ)全條形統(tǒng)計(jì)圖.
(2)直接寫出這組數(shù)據(jù)的眾數(shù)、中位數(shù),求出這組數(shù)據(jù)的平均數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,已知A(a,0),B(b,3),C(4,0),且滿足(a+b)2+|a﹣b+6|=0,線段AB交y軸于F點(diǎn).
(1)求點(diǎn)A、B的坐標(biāo);
(2)點(diǎn)D為y軸正半軸上一點(diǎn),若ED∥AB,且AM,DM分別平分∠CAB,∠ODE,如圖 2,求∠AMD的度數(shù);
(3)如圖 3,(也可以利用圖 1)①求點(diǎn)F的坐標(biāo);②坐標(biāo)軸上是否存在點(diǎn)P,使得△ABP和△ABC的面積相等?若存在,求出P點(diǎn)坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com