【題目】尺規(guī)作圖(不要求寫出作法,請保留作圖痕跡):

1)如圖1,經(jīng)過已知直線外一點(diǎn)作這條直線的垂線;

2)如圖2,已知等腰三角形底邊長為,底邊上的高為,求作這個等腰三角形.

【答案】1)見解析;(2)見解析

【解析】

1)根據(jù)尺規(guī)作圖的方法過直線外一點(diǎn)向直線作垂線即可;

2)根據(jù)尺規(guī)作圖的方法先畫一條射線,再畫垂線,然后截取高,連線即可.

1)作法:①任意取一點(diǎn)K,使K和C在的兩旁.
②以C為圓心,CK的長為半徑作弧,交直線于點(diǎn)D和E.
③分別以D和E為圓心,大于DE的長為半徑作弧,兩弧交于點(diǎn)F,
④作直線CF.
如下圖,直線CF就是所求的垂線.

2)作圖:①畫射線AE,在射線上截取AB=a
②作AB的垂直平分線MN,垂足為O,再截取CO=h
③再連接AC、CB

如下圖,△ABC即為所求.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過點(diǎn),,三點(diǎn).

求此拋物線的解析式;

若點(diǎn)是線段上的點(diǎn)(不與,重合),過軸交拋物線于,設(shè)點(diǎn)的橫坐標(biāo)為,請用含的代數(shù)式表示的長;

的條件下,連接,,是否存在點(diǎn),使的面積最大?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在10×10的網(wǎng)格中,每個小方格都是邊長為1的小正方形,每個小正方形的頂點(diǎn)稱為格點(diǎn).如果拋物線經(jīng)過圖中的三個格點(diǎn),那么以這三個格點(diǎn)為頂點(diǎn)的三角形稱為該拋物線的“內(nèi)接格點(diǎn)三角形”.設(shè)對稱軸平行于y軸的拋物線與網(wǎng)格對角線OM的兩個交點(diǎn)為A,B,其頂點(diǎn)為C,如果△ABC是該拋物線的內(nèi)接格點(diǎn)三角形,AB=3,且點(diǎn)A,B,C的橫坐標(biāo)xA,xB,xC滿足xA<xC<xB,那么符合上述條件的拋物線條數(shù)是( 。

A. 7 B. 8 C. 14 D. 16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中國派遣三艘海監(jiān)船在南海保護(hù)中國漁民不受菲律賓的侵犯.在雷達(dá)顯示圖上,標(biāo)明了三艘海監(jiān)船的坐標(biāo)為、,(單位:海里)三艘海監(jiān)船安裝有相同的探測雷達(dá),雷達(dá)的有效探測范圍是半徑為的圓形區(qū)域(只考慮在海平面上的探測).

若在三艘海監(jiān)船組成的區(qū)域內(nèi)沒有探測盲點(diǎn),則雷達(dá)的有效探測半徑至少為________海里;

某時刻海面上出現(xiàn)一艘菲律賓海警船,在海監(jiān)船測得點(diǎn)位于南偏東方向上,同時在海監(jiān)船測得位于北偏東方向上,海警船正以每小時海里的速度向正西方向移動,我海監(jiān)船立刻向北偏東方向運(yùn)動進(jìn)行攔截,問我海監(jiān)船至少以多少速度才能在此方向上攔截到菲律賓海警船

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為的等邊三角形的頂點(diǎn)分別在邊,上當(dāng)在邊上運(yùn)動時,隨之在邊上運(yùn)動,等邊三角形的形狀保持不變,運(yùn)動過程中,點(diǎn)到點(diǎn)的最大距離為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在7×7網(wǎng)格中,每個小正方形的邊長都為1.

(1)若點(diǎn)A1,3),C2,1), ①建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系;②點(diǎn)B的坐標(biāo)為( , );

(2)判斷ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A1,2),B3,1),C(﹣2,﹣1).

1)在圖中作出ABC關(guān)于y軸對稱的A1B1C1,寫出點(diǎn)A1,B1,C1的坐標(biāo)(直接寫答案).

2A1B1C1的面積為   

3)在y軸上畫出點(diǎn)Q,使QAB的周長最。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形中,,連接,上一點(diǎn),連接,過點(diǎn)于點(diǎn),則圖中的全等三角形共有(

A.4B.3C.2D.1

查看答案和解析>>

同步練習(xí)冊答案