【題目】如圖所示的坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)依次為A(﹣1,2),B(﹣4,1),C(﹣2,﹣2).
(1)請(qǐng)?jiān)谶@個(gè)坐標(biāo)系中作出△ABC關(guān)于y軸對(duì)稱的△A1B1C1.
(2)分別寫(xiě)出點(diǎn)A1、B1、C1的坐標(biāo).
(3)求△A1B1C1的面積.
【答案】(1)如圖所示,△A1B1C1即為所求;(2)A1的坐標(biāo)為(1,2)、B1的坐標(biāo)(4,1)、C1的坐標(biāo)為(2,﹣2);(3)△A1B1C1的面積為.
【解析】
(1)分別作出點(diǎn)A,B,C關(guān)于y軸的對(duì)稱點(diǎn),再首尾順次連接即可得;
(2)由(1)中所作圖形可得答案;
(3)利用割補(bǔ)法求解可得.
(1)如圖所示,△A1B1C1即為所求.
(2)由圖知,A1的坐標(biāo)為(1,2)、B1的坐標(biāo)為(4,1)、C1的坐標(biāo)為(2,﹣2);
(3)△A1B1C1的面積為3×4﹣×1×4﹣×1×3﹣×2×3=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在等腰Rt△ABC中,∠BAC=90°,點(diǎn)E在AC上(且不與點(diǎn)A、C重合).在△ABC的外部作等腰Rt△CED,使∠CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.
(1)求證:△AEF是等腰直角三角形;
(2)如圖2,將△CED繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E在線段BC上時(shí),連接AE,求證:AF=AE;
(3)如圖3,將△CED繞點(diǎn)C繼續(xù)逆時(shí)針旋轉(zhuǎn),當(dāng)平行四邊形ABFD為菱形,且△CED在△ABC的下方時(shí),若AB=2,CE=2,求線段AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a,b是任意兩個(gè)不等實(shí)數(shù),我們規(guī)定:滿足不等式a≤x≤b的實(shí)數(shù)x的所有取值的全體叫做閉區(qū)間,表示為[a,b].對(duì)于一個(gè)函數(shù),如果它的自變量x與函數(shù)值y滿足:當(dāng)m≤x≤n時(shí),有m≤y≤n,我們就稱此函數(shù)是閉區(qū)間[m,n]上的“閉函數(shù)”.如函數(shù)y=﹣x+4,當(dāng)x=1時(shí),y=3;當(dāng)x=3時(shí),y=1,即當(dāng)1≤x≤3時(shí),恒有1≤y≤3,所以說(shuō)函數(shù)y=﹣x+4是閉區(qū)間[1,3]上的“閉函數(shù)”,同理函數(shù)y=x也是閉區(qū)間[1,3]上的“閉函數(shù)”.
(1)反比例函數(shù)y=是閉區(qū)間[1,2018]上的“閉函數(shù)”嗎?請(qǐng)判斷并說(shuō)明理由;
(2)如果已知二次函數(shù)y=x2﹣4x+k是閉區(qū)間[2,t]上的“閉函數(shù)”,求k和t的值;
(3)如果(2)所述的二次函數(shù)的圖象交y軸于C點(diǎn),A為此二次函數(shù)圖象的頂點(diǎn),B為直線x=1上的一點(diǎn),當(dāng)△ABC為直角三角形時(shí),寫(xiě)出點(diǎn)B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,D是BC上任意一點(diǎn),過(guò)D分別向AB,AC引垂線,垂足分別為E,F(xiàn),CG是AB邊上的高.
(1)當(dāng)D點(diǎn)在BC的什么位置時(shí),DE=DF?請(qǐng)說(shuō)明理由.
(2)DE,DF,CG的長(zhǎng)之間存在著怎樣的等量關(guān)系?并說(shuō)明理由.
(3)若D在底邊BC的延長(zhǎng)線上,(2)中的結(jié)論還成立嗎?若不成立,又存在怎樣的關(guān)系?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)如圖所示是隧道的截面由拋物線和長(zhǎng)方形構(gòu)成,長(zhǎng)方形的長(zhǎng)是12 m,寬是4 m.按照?qǐng)D中所示的直角坐標(biāo)系,拋物線可以用y=x2+bx+c表示,且拋物線上的點(diǎn)C到OB的水平距離為3 m,到地面OA的距離為m.
(1)求拋物線的函數(shù)關(guān)系式,并計(jì)算出拱頂D到地面OA的距離;
(2)一輛貨運(yùn)汽車(chē)載一長(zhǎng)方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向車(chē)道,那么這輛貨車(chē)能否安全通過(guò)?
(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過(guò)8m,那么兩排燈的水平距離最小是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】規(guī)定兩數(shù)a,b之間的一種運(yùn)算,記作(a,b):如果,那么(a,b)=c.
例如:因?yàn)?/span>23=8,所以(2,8)=3.
(1)根據(jù)上述規(guī)定,填空:
(3,9)=_____,(5,125)=_____,(,)=_____,(-2,-32)=_____.
(2)令,,,試說(shuō)明下列等式成立的理由:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ABC=45° , BC=4,以AC為直角邊,點(diǎn)A為直角頂點(diǎn)向△ABC的外側(cè)作等腰直角三角形ACD,連接BD,則△DBC的面積為( ) .
A.8B.10C.4D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90° ,∠ACB=30° ,AD平分∠BAC, BD= ,點(diǎn)P為線段AC上的一個(gè)動(dòng)點(diǎn)
(1)求AC的長(zhǎng)
(2)作△ABC中∠ACB的角平分線CH,求BH的長(zhǎng)
(3)若點(diǎn)E在直線1上,且在C點(diǎn)的左側(cè),PE=PC, AP為多少時(shí),△ACE為等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,網(wǎng)格中有格點(diǎn)△ABC與△DEF.
(1)△ABC與△DEF是否全等?(不說(shuō)理由.)
(2)△ABC與△DEF是否成軸對(duì)稱?(不說(shuō)理由.)
(3)若△ABC與△DEF成軸對(duì)稱,請(qǐng)畫(huà)出它的對(duì)稱軸l.并在直線l上畫(huà)出點(diǎn)P,使PA+PC最小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com