【題目】如圖,在等腰直角三角形中,,,中點(diǎn),邊上一動(dòng)點(diǎn),連接,以為邊并在的右側(cè)作等邊,連接,則的最小值為______.

【答案】3

【解析】

60°聯(lián)想旋轉(zhuǎn)全等,轉(zhuǎn)換動(dòng)長為定點(diǎn)到定線的長,構(gòu)建等邊三角形BDG,利用△BDF≌△GDE,轉(zhuǎn)換BF=GE,然后即可求得其最小值.

BD為邊作等邊三角形BDG,連接GE,如圖所示:

∵等邊三角形BDG,等邊三角形DEF

∴∠BDG=EDF=60°,BD=GD=BGDE=DF=EF

∴∠BDG+GFD=EDF+GFD,即∠BDF=∠GDE

∴△BDF≌△GDESAS

BF=GE

當(dāng)GE⊥AC時(shí),GE有最小值,如圖所示GE′,作DH⊥GE′

BF=GE= CD+DG=2+1=3

故答案為:3.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】書店老板去圖書批發(fā)市場購買某種圖書,第一次用 1200 元購買若干本,按 每本 10 元出售,很快售完.第二次購買時(shí),每本書的進(jìn)價(jià)比第一次提高了 20%,他用1500 元所購買的數(shù)量比第一次多 10 本.

1)求第一次購買的圖書,每本進(jìn)價(jià)多少元?

2)第二次購買的圖書,按每本 10 元售出 200 本時(shí),出現(xiàn)滯銷,剩下的圖書降價(jià)后全部 售出,要使這兩次銷售的總利潤不低于 2100 元,每本至多降價(jià)多少元?(利潤=銷售收入一進(jìn)價(jià))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,我們定義直線為拋物線、bc為常數(shù),夢想直線;有一個(gè)頂點(diǎn)在拋物線上,另有一個(gè)頂點(diǎn)在y軸上的三角形為其夢想三角形”.

已知拋物線與其夢想直線交于A、B兩點(diǎn)點(diǎn)A在點(diǎn)B的左側(cè),與x軸負(fù)半軸交于點(diǎn)C

填空:該拋物線的夢想直線的解析式為______,點(diǎn)A的坐標(biāo)為______,點(diǎn)B的坐標(biāo)為______;

如圖,點(diǎn)M為線段CB上一動(dòng)點(diǎn),將AM所在直線為對稱軸翻折,點(diǎn)C的對稱點(diǎn)為N,若為該拋物線的夢想三角形,求點(diǎn)N的坐標(biāo);

當(dāng)點(diǎn)E在拋物線的對稱軸上運(yùn)動(dòng)時(shí),在該拋物線的夢想直線上,是否存在點(diǎn)F,使得以點(diǎn)AC、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請直接寫出點(diǎn)EF的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=,∠B=120°,點(diǎn)EAD邊上的一個(gè)動(dòng)點(diǎn)(不與A,D重合),EF∥ABBC于點(diǎn)F,點(diǎn)GCD上,DG=DE.若△EFG是等腰三角形,則DE的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一家商店進(jìn)行門店升級需要裝修,裝修期間暫停營業(yè),若請甲乙兩個(gè)裝修組同時(shí)施工,8天可以完成,需付費(fèi)用共3520元;若先請甲組單獨(dú)做6天,再請乙組單獨(dú)做12天可以完成,需付費(fèi)用3480元,問:

甲、乙兩組工作一天,商店各應(yīng)付多少錢?

已知甲組單獨(dú)完成需12天,乙組單獨(dú)完成需24天,單獨(dú)請哪個(gè)組,商店所需費(fèi)用最少?

裝修完畢第二天即可正常營業(yè),且每天仍可盈利200即裝修前后每天盈利不變,你認(rèn)為商店應(yīng)如何安排施工更有利?說說你的理由可用問的條件及結(jié)論

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知的斜邊,

以點(diǎn)為圓心作圓,當(dāng)半徑為多長時(shí),直線相切?為什么?

以點(diǎn)為圓心,分別以為半徑作兩個(gè)圓,這兩個(gè)圓與直線分別有怎樣的位置關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的切線,為切點(diǎn),是過點(diǎn)的割線,于點(diǎn),若,,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與坐標(biāo)軸相交于、三點(diǎn),是線段上一動(dòng)點(diǎn)(端點(diǎn)除外),過,交于點(diǎn),連接

直接寫出、的坐標(biāo);

求拋物線的對稱軸和頂點(diǎn)坐標(biāo);

面積的最大值,并判斷當(dāng)的面積取最大值時(shí),以、為鄰邊的平行四邊形是否為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】要建一個(gè)如圖所示的面積為300 的長方形圍欄,圍欄總長50m,一邊靠墻(墻長25m),

(1)求圍欄的長和寬;

(2)能否圍成面積為400 的長方形圍欄?如果能,求出該長方形的長和寬,如果不能請說明理由。

查看答案和解析>>

同步練習(xí)冊答案