【題目】如圖,在菱形ABCD中,AB=,∠B=120°,點(diǎn)E是AD邊上的一個(gè)動(dòng)點(diǎn)(不與A,D重合),EF∥AB交BC于點(diǎn)F,點(diǎn)G在CD上,DG=DE.若△EFG是等腰三角形,則DE的長(zhǎng)為_____.
【答案】1或
【解析】
由四邊形ABCD是菱形,得到BC∥AD,由于EF∥AB,得到四邊形ABFE是平行四邊形,根據(jù)平行四邊形的性質(zhì)得到EF∥AB,于是得到EF=AB=,當(dāng)△EFG為等腰三角形時(shí),①EF=GE=時(shí),于是得到DE=DG=AD÷=1,②GE=GF時(shí),根據(jù)勾股定理得到DE=.
∵四邊形ABCD是菱形,∠B=120°,
∴∠D=∠B=120°,∠A=180°-120°=60°,BC∥AD,
∵EF∥AB,
∴四邊形ABFE是平行四邊形,
∴EF∥AB,
∴EF=AB=,∠DEF=∠A=60°,∠EFC=∠B=120°,
∵DE=DG,
∴∠DEG=∠DGE=30°,
∴∠FEG=30°,
當(dāng)△EFG為等腰三角形時(shí),
當(dāng)EF=EG時(shí),EG=,
如圖1,
過點(diǎn)D作DH⊥EG于H,
∴EH=EG=,
在Rt△DEH中,DE==1,
GE=GF時(shí),如圖2,
過點(diǎn)G作GQ⊥EF,
∴EQ=EF=,在Rt△EQG中,∠QEG=30°,
∴EG=1,
過點(diǎn)D作DP⊥EG于P,
∴PE=EG=,
同①的方法得,DE=,
當(dāng)EF=FG時(shí),由∠EFG=180°-2×30°=120°=∠CFE,此時(shí),點(diǎn)C和點(diǎn)G重合,點(diǎn)F和點(diǎn)B重合,不符合題意,
故答案為:1或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),正比例函數(shù)的圖像與反比例函數(shù)的圖像都經(jīng)過點(diǎn)A(2,m).
(1)求反比例函數(shù)的解析式;
(2)點(diǎn)B在軸的上,且OA=BA,反比例函數(shù)圖像上有一點(diǎn)C,且∠ABC=90°,求點(diǎn)C坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線L1:y=﹣x2+2x+3與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,在L1上任取一點(diǎn)P,過點(diǎn)P作直線l⊥x軸,垂足為D,將L1沿直線l翻折得到拋物線L2,交x軸于點(diǎn)M,N(點(diǎn)M在點(diǎn)N的左側(cè)).
(1)當(dāng)L1與L2重合時(shí),求點(diǎn)P的坐標(biāo);
(2)當(dāng)點(diǎn)P與點(diǎn)B重合時(shí),求此時(shí)L2的解析式;并直接寫出L1與L2中,y均隨x的增大而減小時(shí)的x的取值范圍;
(3)連接PM,PB,設(shè)點(diǎn)P(m,n),當(dāng)n= m時(shí),求△PMB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小賢與小杰在探究某類二次函數(shù)問題時(shí),經(jīng)歷了如下過程:
求解體驗(yàn)
(1)已知拋物線經(jīng)過點(diǎn)(-1,0),則= ,頂點(diǎn)坐標(biāo)為 ,該拋物線關(guān)于點(diǎn)(0,1)成中心對(duì)稱的拋物線的表達(dá)式是 .
抽象感悟
我們定義:對(duì)于拋物線,以軸上的點(diǎn)為中心,作該拋物線關(guān)于
點(diǎn)對(duì)稱的拋物線 ,則我們又稱拋物線為拋物線的“衍生拋物線”,點(diǎn)為“衍生中心”.
(2)已知拋物線關(guān)于點(diǎn)的衍生拋物線為,若這兩條拋物線有交點(diǎn),求的取值范圍.
問題解決
(3) 已知拋物線
①若拋物線的衍生拋物線為,兩拋物線有兩個(gè)交點(diǎn),且恰好是它們的頂點(diǎn),求的值及衍生中心的坐標(biāo);
②若拋物線關(guān)于點(diǎn)的衍生拋物線為 ,其頂點(diǎn)為;關(guān)于點(diǎn)的衍生拋物線為,其頂點(diǎn)為;…;關(guān)于點(diǎn)的衍生拋物線為,其頂點(diǎn)為;…(為
正整數(shù)).求的長(zhǎng)(用含的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BC=3cm,AC=4cm,按圖中所示方法將△BCD沿BD折疊,使點(diǎn)C落在AB邊的C′點(diǎn),那么△ADC′的面積是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】風(fēng)電已成為我國繼煤電、水電之后的第三大電源,風(fēng)電機(jī)組主要由塔桿和葉片組成(如圖①),圖②是平面圖.光明中學(xué)的數(shù)學(xué)興趣小組針對(duì)風(fēng)電塔桿進(jìn)行了測(cè)量,甲同學(xué)站在平地上的A處測(cè)得塔桿頂端C的仰角是55°,乙同學(xué)站在巖石B處測(cè)得葉片的最高位置D的仰角是45°(D,C,H在同一直線上,G,A,H在同一條直線上),他們事先從相關(guān)部門了解到葉片的長(zhǎng)度為15米(塔桿與葉片連接處的長(zhǎng)度忽略不計(jì)),巖石高BG為4米,兩處的水平距離AG為23米,BG⊥GH,CH⊥AH,求塔桿CH的高.(參考數(shù)據(jù):tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角三角形中,,,為中點(diǎn),為邊上一動(dòng)點(diǎn),連接,以為邊并在的右側(cè)作等邊,連接,則的最小值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù),,是常數(shù),且中的與的部分對(duì)應(yīng)值如下表所示,則下列結(jié)論中,正確的個(gè)數(shù)有( )
;當(dāng)時(shí),;當(dāng)時(shí),的值隨值的增大而減;
方程有兩個(gè)不相等的實(shí)數(shù)根.
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小王的學(xué)校舉行了一次年級(jí)考試,考了若干門課程,后加試了一門,小王考得分,這時(shí)小王的平均成績(jī)比最初的平均成績(jī)提高了分.后來又加試了一門,小王考得分,這時(shí)小王的平均成績(jī)比最初的平均成績(jī)下降了分,則小王共考了(含加試的兩門)________門課程,最后平均成績(jī)?yōu)?/span>________分.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com