【題目】如圖1,AB為⊙O的直徑,C為⊙O上一點,連接CB,過C作CD⊥AB于點D,過點C作∠BCE,使∠BCE=∠BCD,其中CE交AB的延長線于點E.
(1)求證:CE是⊙O的切線.
(2)如圖2,點F在⊙O上,且滿足∠FCE=2∠ABC,連接AF井延長交EC的延長線于點G.
①試探究線段CF與CD之間滿足的數(shù)量關(guān)系;
②若CD=4,BD=2,求線段FG的長.
【答案】(1)詳見解析;(2)①CF=2CD;②FG=.
【解析】
(1)如圖1,連接OC,根據(jù)等邊對等角得:∠OBC=∠OCB,由垂直定義得:∠OBC+∠BCD=90°,根據(jù)等量代換可得:∠OCB+∠BCE=90°,即OC⊥CE,可得結(jié)論;
(2)①如圖2,過O作OH⊥CF于點H,證明△COH≌△COD,則CH=CD,得CF=2CD;
②先根據(jù)勾股定理求BC==2,則CF=2CD=8,設(shè)OC=OB=x,則OD=x﹣2,根據(jù)勾股定理列方程得:x2=(x﹣2)2+42,可得x的值,證明△GFC∽△CBO,列比例式可得FG的長.
(1)證明:如圖1,連接OC,
∵OB=OC,
∴∠OBC=∠OCB,
∵CD⊥AB,
∴∠OBC+∠BCD=90°,
∵∠BCE=∠BCD,
∴∠OCB+∠BCE=90°,即OC⊥CE,
∴CE是⊙O的切線;
(2)解:①線段CF與CD之間滿足的數(shù)量關(guān)系是:CF=2CD,
理由如下:
如圖2,過O作OH⊥CF于點H,
∴CF=2CH,
∵∠FCE=2∠ABC=2∠OCB,且∠BCD=∠BCE,
∴∠OCH=∠OCD,
∵OC為公共邊,
∴△COH≌△COD(AAS),
∴CH=CD,
∴CF=2CD;
②∵CD=4,BD=2,
∴BC==2,由①得:CF=2CD=8,
設(shè)OC=OB=x,則OD=x﹣2,
在Rt△ODC中,OC2=OD2+CD2,
∴x2=(x﹣2)2+42,
解得:x=5,即OB=5,
∵OC⊥GE,
∴∠OCF+∠FCG=90°,
∵∠OCD+∠COD=90°,∠FCO=∠OCD,
∴∠GCF=∠COB,
∵四邊形ABCF為⊙O的內(nèi)接四邊形,
∴∠GFC=∠ABC,
∴△GFC∽△CBO,
∴,
∴,
∴FG=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,是的中點,,動點從點出發(fā)沿向終點運動,動點從點出發(fā)沿折線向終點運動,兩點速度均為每秒1個單位,兩點同時出發(fā),當(dāng)其中一點到達終點后,運動停止,設(shè)運動時間為,的面積為(平方單位),則與之間的圖象大致為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A是反比例函數(shù)y= 在第一象限圖象上一點,連接OA,過點A作AB∥x軸(點B在點A右側(cè)),連接OB,若OB平分∠AOX,且點B的坐標(biāo)是(8,4),則k的值是( 。
A.6B.8C.12D.16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形中,為直線上一動點(不與端點重合),以為直角邊在右側(cè)作等腰直角三角形連接.
(1)如圖①,當(dāng)點在線段上時,線段和的數(shù)量關(guān)系為 ;
(2)如圖②,當(dāng)點在線段延長線上時,線段和之間又有怎樣的數(shù)量關(guān)系?寫出你的猜想,并給予證明;
(3)如圖③,當(dāng)點在線段反向延長線上時,且點分別在直線的兩側(cè),請直接寫出線段和的數(shù)量關(guān)系為 ;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一塊直角三角形紙板的直角頂點放在C(1,)處,兩直角邊分別與x,y軸平行,紙板的另兩個頂點A,B恰好是直線y=kx+與雙曲線y=(m>0)的交點.
(1)求m和k的值;
(2)設(shè)雙曲線y=(m>0)在A,B之間的部分為L,讓一把三角尺的直角頂點P在L上滑動,兩直角邊始終與坐標(biāo)軸平行,且與線段AB交于M,N兩點,請?zhí)骄渴欠翊嬖邳cP使得MN=AB,寫出你的探究過程和結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=65°,BC=6,以BC為直徑的半圓O與AB、AC分別交于點D、E,則圖中由O、D、E三點所圍成的扇形面積等于_____.(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=45°,AB=AC,點D為BC的中點,直角∠MDN繞點D旋轉(zhuǎn),DM,DN分別與邊AB,AC交于E,F兩點,下列結(jié)論:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF,其中正確結(jié)論是( )
A.①②③B.②③④C.①②④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,點E是矩形ABCD的邊AD上一點,BE=AD,AE=8,現(xiàn)有甲乙二人同時從E點出發(fā),分別沿EC、ED方向前進,甲的速度是乙的倍,甲到達點目的地C點的同時乙恰巧到達終點D處.
(1)求tan∠ECD的值
(2)求線段AB及BC的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與軸交于點,兩點(點在點的右側(cè)),與軸交于點,點是拋物線上的一個動點,過作軸,垂足為,交直線于點.
(1)直接寫出,,三點的坐標(biāo);
(2)若以,,,為頂點的四邊形是平行四邊形,求此時點的坐標(biāo);
(3)當(dāng)點位于直線下方的拋物線上時,過點作于點,設(shè)點的橫坐標(biāo)為,的面積為,求與的函數(shù)關(guān)系式,并求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com