【題目】如圖,矩形ABCD的對角線AC的中點為O,過點O作,交BC邊于點E,交AD邊于點F,分別連接AE、CF.
(1)求證:四邊形AECF是菱形;
(2)若,,請直接寫出EF的長為__________.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)圖象的頂點為D,其圖象與x軸的交點A、B的橫坐標分別為,與y軸負半軸交于點C.
若是等腰直角三角形,求a的值.
探究:是否存在a,使得是等腰三角形?若存在,求出符合條件的a的值;不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與x軸、y軸分別交于點A、B,以線段AB為邊在第一象限內(nèi)作等邊△ABC,
(1)求△ABC的面積;
(2)如果在第二象限內(nèi)有一點P(a,),試用含a的式子表示四邊形ABPO的面積,并求出當△ABP的面積與△ABC的面積相等時a的值;
(3)在x軸上,存在這樣的點M,使△MAB為等腰三角形.請直接寫出所有符合要求的點M的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2﹣(2k﹣1)x+k2﹣2k+2=0有兩個不相等的實數(shù)根.
(1)求實數(shù)k的取值范圍;
(2)設(shè)方程的兩個實數(shù)根分別為x1,x2.是否存在這樣的實數(shù)k,使得|x1|﹣|x2|=?若存在,求出這樣的k值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)場準備圍建一個矩形養(yǎng)雞場,其中一邊靠墻(墻的長度為15米),其余部分用籬笆圍成,在墻所對的邊留一道1米寬的門,已知籬笆的總長度為23米.
(1)設(shè)圖中AB(與墻垂直的邊)長為x米,則AD的長為 米(請用含x的代數(shù)式表示);
(2)若整個雞場的總面積為y米2,求y的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線:經(jīng)過原點,與x軸的另一個交點為,將拋物線向右平移個單位得到拋物線,交x軸于A、B兩點點A在點B的左邊,交y軸于點C.
求拋物線的解析式.
如圖,當時,連接AC,過點A做交拋物線于點D,連接CD.
求拋物線的解析式.
直接寫出點D的坐標為______.
若拋物線的對稱軸上存在點P,使為等邊三角形,請直接寫出此時m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線分別是中的對邊。
(1)求證:該拋物線與軸必有兩個交點;
(2)設(shè)拋物線與軸的兩個交點為,頂點為 ,已知的周長為,求拋物線的解析式;
(3)設(shè)直線與拋物線交于點,與軸交于點,拋物線與軸交于點,若拋物線的對稱軸為與的面積之比為,試判斷三角形的形狀,并證明你的結(jié)論。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個四邊形被一條對角線分割成兩個三角形,如果分割所得的兩個三角形相似,我們就把這條對角線稱為相似對角線.
(1)如圖,正方形的邊長為4,為的中點,點,分別在邊和上,且,線段與交于點,求證:為四邊形的相似對角線;
(2)在四邊形中,是四邊形的相似對角線,,,,求的長;
(3)如圖,已知四邊形是圓的內(nèi)接四邊形,,,,點是的中點,點是射線上的動點,若是四邊形的相似對角線,請直接寫出線段的長度(寫出3個即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過點(﹣1,0),對稱軸為直線l,則下列結(jié)論:①abc>0;②a+b+c>0;③a+c>0;④a+b>0,正確的是( )
A. ①②④B. ②④C. ①③D. ①④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com