【題目】如圖,在扇形OAB中,點(diǎn)C是弧AB上任意一點(diǎn)(不與點(diǎn)AB重合),CDOAOB于點(diǎn)D,點(diǎn)IOCD的內(nèi)心,連結(jié)OIBI.若∠AOB=β,則∠OIB等于(

A. 180°βB. 180°-βC. 90°+ βD. 90°+β

【答案】A

【解析】

首先根據(jù)平行線的性質(zhì)得出∠AOC=OCD,根據(jù)角的和差及等量代換得出∠OCD+COB= β ,然后根據(jù)三角形內(nèi)心的定義得出∠COI+∠OCI= 進(jìn)而根據(jù)三角形的內(nèi)角和得出∠OIC=180°- β,最后根據(jù)SAS判斷出△COI≌△BOI,根據(jù)全等三角形對(duì)應(yīng)角相等得出∠OIB =OIC,從而得出答案

連接IC

CDOA ,

∴∠AOC=OCD,

∵∠AOC+∠COB=AOB= β ,

∴∠OCD+COB= β ,

點(diǎn)IOCD的內(nèi)心 ,

∴∠COI+∠OCI=,

OIC=180°-(COI+∠OCI)= 180°- β ;

COIBOI中,

OC=OB,COI=BOI,OI=OI,

∴△COI≌△BOI,

OIB =OIC= 180°- β.

故答案為:A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線形拱橋,P處有一照明燈,水面OA4m,從OA兩處雙測(cè)P處,仰角分別為αβ,且tanα,tanβ,以O為原點(diǎn),OA所在直線為x軸建立直角坐標(biāo)系. P點(diǎn)坐標(biāo)為_____;若水面上升1m,水面寬為_____m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線經(jīng)過兩點(diǎn),頂點(diǎn)坐標(biāo)為,有下列結(jié)論:①;②;③;④.則所有正確結(jié)論的個(gè)數(shù)為( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知在平面直角坐標(biāo)系中,四邊形是矩形點(diǎn)分別在軸和軸的正半軸上,連結(jié),,,的中點(diǎn).

(1)OC的長和點(diǎn)的坐標(biāo);

(2)如圖2是線段上的點(diǎn),,點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn),經(jīng)過三點(diǎn)的拋物線交軸的正半軸于點(diǎn),連結(jié)于點(diǎn)

①將沿所在的直線翻折,若點(diǎn)恰好落在上,求此時(shí)的長和點(diǎn)的坐標(biāo);

②以線段為邊,在所在直線的右上方作等邊,當(dāng)動(dòng)點(diǎn)從點(diǎn)運(yùn)動(dòng)到點(diǎn)時(shí),點(diǎn)也隨之運(yùn)動(dòng),請(qǐng)直接寫出點(diǎn)運(yùn)動(dòng)路徑的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)有理數(shù)乘法(除法)法則可知:①若(或),則;②若(或),則

根據(jù)上述知識(shí),求不等式的解集:

解:原不等式可化為:(1或(2

由(1)得,,由(2)得,,

∴原不等式的解集為:

請(qǐng)你運(yùn)用所學(xué)知識(shí),結(jié)合上述材料解答下列問題:

1)不等式的解集為

2)求不等式的解集(要求寫出解答過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1是某酒店的推拉門,已知門的寬度AD=2米,兩扇門的大小相同(即AB=CD),且AB+CD=AD,現(xiàn)將右邊的門CDD1C1繞門軸DD1向外面旋轉(zhuǎn)67°(如圖2所示).

參考數(shù)據(jù):(sin67°≈0.92,cos67°≈0.39,tan29.6°≈057,tan19.6°≈0.36,sin29.6°≈0.49

1)求點(diǎn)C到直線AD的距離.

2)將左邊的門ABB1A1繞門軸AA1向外面旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為a(如圖3所示),問當(dāng)a為多少度時(shí),點(diǎn)BC之間的距離最短.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象相交于、兩點(diǎn),其中點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為.

1)根據(jù)圖象,直接寫出滿足的取值范圍;

2)求這兩個(gè)函數(shù)的表達(dá)式;

3)點(diǎn)在線段上,且,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某品牌筆記本電腦的售價(jià)是5000元/臺(tái)。最近,該商家對(duì)此型號(hào)筆記本電腦舉行促銷活動(dòng),有兩種優(yōu)惠方案。方案一:每臺(tái)按售價(jià)的九折銷售;方案二:若購買不超過5臺(tái),每臺(tái)按售價(jià)銷售;若超過5臺(tái),超過的部分每臺(tái)按售價(jià)的八折銷售。

設(shè)公司一次性購買此型號(hào)筆記本電腦臺(tái)。

Ⅰ.根據(jù)題意,填寫下表:

購買臺(tái)數(shù)

3

10

20

方案一的總費(fèi)用(元)

13500

45000

90000

方案二的總費(fèi)用(元)

15000

Ⅱ.設(shè)選擇方案一的費(fèi)用為元,選擇方案二的費(fèi)用為元,分別寫出關(guān)于的函數(shù)關(guān)系式;

Ⅲ.當(dāng)時(shí),該公司采用哪種方案購買更合算?并說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過x軸上的點(diǎn)A1,0)和點(diǎn)By軸上的點(diǎn)C,經(jīng)過B、C兩點(diǎn)的直線為

①求拋物線的解析式.

②點(diǎn)PA出發(fā),在線段AB上以每秒1個(gè)單位的速度向B運(yùn)動(dòng),同時(shí)點(diǎn)EB出發(fā),在線段BC上以每秒2個(gè)單位的速度向C運(yùn)動(dòng).當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,求t為何值時(shí),PBE的面積最大并求出最大值.

③過點(diǎn)A于點(diǎn)M,過拋物線上一動(dòng)點(diǎn)N(不與點(diǎn)B、C重合)作直線AM的平行線交直線BC于點(diǎn)Q.若點(diǎn)A、M、N、Q為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)N的橫坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案