【題目】觀察下列分解因式的過(guò)程:
x2+2ax﹣3a2
=x2+2ax+a2﹣a2﹣3a2(先加上a2,再減去a2)
=(x+a)2﹣4a2(運(yùn)用完全平方公式)
=(x+a+2a)(x+a﹣2a )(運(yùn)用平方差公式)
=(x+3a)(x﹣a)
像上面那樣通過(guò)加減項(xiàng)配出完全平方式后再把二次三項(xiàng)式分解因式的方法,叫做配方法.
請(qǐng)你用配方法分解因式:m2﹣4mn+3n2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】加、減、乘、除是我們常用的四種運(yùn)算,它們分別用+、-、×、÷來(lái)表示.現(xiàn)在我們來(lái)規(guī)定一種新的運(yùn)算※,規(guī)定:a※b=a2-ab,如果1※x=1,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形ABCD中,E點(diǎn)為BC中點(diǎn),連接AE,過(guò)B點(diǎn)作BF⊥AE,交CD于F點(diǎn),交AE于G點(diǎn),連接GD,過(guò)A點(diǎn)作AH⊥GD交GD于H點(diǎn).
(1) 求證:△ABE≌△BCF;
(2) 若正方形邊長(zhǎng)為4,AH=,求△AGD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸是直線x=1,且經(jīng)過(guò)點(diǎn)(3,0),則a﹣b+c的值為( )
A.﹣1
B.0
C.1
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】年初,工信部官網(wǎng)發(fā)布了2016年通信運(yùn)營(yíng)業(yè)統(tǒng)計(jì)公報(bào),數(shù)據(jù)顯示,2016年,4G用戶數(shù)呈爆發(fā)式增長(zhǎng),全年新增3.4億戶,總數(shù)達(dá)到770 000 000億戶,將770 000 000用科學(xué)記數(shù)法表示應(yīng)為( )
A.0.77×109
B.7.7×107
C.7.7×108
D.7.7×109
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AB是圓O的切線,切點(diǎn)為B,直線AO交圓O于C、D兩點(diǎn),CD=2,∠DAB=30°,動(dòng)點(diǎn)P在直線AB上運(yùn)動(dòng),PC交圓O于另一點(diǎn)Q.
(1)當(dāng)點(diǎn)P運(yùn)動(dòng)到Q、C兩點(diǎn)重合時(shí)(如圖①),求AP的長(zhǎng);
(2)點(diǎn)P運(yùn)動(dòng)過(guò)程中,有幾個(gè)位置(幾種情況)使△CQD的面積為(直接寫出答案)?
(3)當(dāng)使△CQD的面積為,且Q位于以CD為直徑的半圓上,CQ>QD時(shí)(如圖②),求AP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各組運(yùn)算中,結(jié)果為負(fù)數(shù)的是( )
A.﹣(﹣3)
B.(﹣3)×(﹣2)
C.﹣|﹣3|
D.(﹣3)2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①所示的旅行箱的箱蓋和箱底兩部分的厚度相同,四邊形ABCD為形如矩形的旅行箱一側(cè)的示意圖,F(xiàn)為AD的中點(diǎn),EF∥CD.現(xiàn)將放置在地面上的箱子打開,使箱蓋的一端點(diǎn)D靠在墻上,O為墻角,圖②為箱子打開后的示意圖.箱子厚度AD=30cm,寬度AB=50cm.
(1)圖②中,EC=________cm,當(dāng)點(diǎn)D與點(diǎn)O重合時(shí),AO的長(zhǎng)為________cm;
(2)若∠CDO=60°,求AO的長(zhǎng)(結(jié)果取整數(shù)值,參考數(shù)據(jù):sin60°≈0.87,cos60°=0.5,tan60°≈1.73,可使用科學(xué)計(jì)算器).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,P為△ABC所在平面上一點(diǎn),且∠APB=∠BPC=∠CPA=120°,則點(diǎn)P叫作△ABC的費(fèi)馬點(diǎn).
(1)如果點(diǎn)P為銳角△ABC的費(fèi)馬點(diǎn),且∠ABC=60°.
①求證: △ABP∽△BCP;
②若PA=3,PC=4,求PB的長(zhǎng);
(2)如圖②,已知銳角△ABC,分別以AB,AC為邊向外作正△ABE和正△ACD,CE和BD相交于點(diǎn)P,連接AP.
①求∠CPD的度數(shù);
②求證:點(diǎn)P為△ABC的費(fèi)馬點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com