【題目】對(duì)于平面直角坐標(biāo)系xOy中的圖形P和直線AB,給出如下定義:M為圖形P上任意一點(diǎn),N為直線AB上任意一點(diǎn),如果M,N兩點(diǎn)間的距離有最小值,那么稱這個(gè)最小值為圖形P和直線AB之間的“確定距離”,記作d(P,直線AB).
已知A(2,0),B(0,2).
(1)求d(點(diǎn)O,直線AB);
(2)⊙T的圓心為半徑為1,若d(⊙T,直線AB)≤1,直接寫(xiě)出t的取值范圍;
(3)記函數(shù)的圖象為圖形Q.若d(Q,直線AB)=1,直接寫(xiě)出k的值.
【答案】(1)見(jiàn)解析;(2)t的值為2-2≤t≤2+2;(3)k的值為-3+或1-.
【解析】
(1)如圖1中,作OH⊥AB于H.求出OH即可解決問(wèn)題.
(2)如圖2中,作TH⊥AB于H,交⊙T于D.分兩種情形求出d(⊙T,直線AB)=1時(shí),點(diǎn)T的坐標(biāo)即可.
(3)當(dāng)直線經(jīng)過(guò)點(diǎn)D(2-,0)與直線AB平行時(shí),此時(shí)兩直線之間的距離為1,該直線的解析式為y=-x+2-,求出直線y=kx經(jīng)過(guò)點(diǎn)E,點(diǎn)F時(shí),k的值即可.
(1)如圖1中,作OH⊥AB于H.
∵A(2,0),B(0,2),
∴OA=OB=2,AB=2,
∵×OA×OB=×AB×OH,
∴OH=,
∴d(點(diǎn)O,直線AB);
(2)如圖2中,作TH⊥AB于H,交⊙T于D.
當(dāng)d(⊙T,直線AB)=1時(shí),DH=1,
∴TH=2,AT=2,
∴OT=2-2,
∴T(2-2,0),
根據(jù)對(duì)稱性可知,當(dāng)⊙T在直線AB的右邊,滿足d(⊙T,直線AB)=1時(shí),T(2+2,0),
∴滿足條件的t的值為2-2≤t≤2+2.
(3)如圖3中,
當(dāng)直線經(jīng)過(guò)點(diǎn)D(2-,0)與直線AB平行時(shí),此時(shí)兩直線之間的距離為1,該直線的解析式為y=-x+2-,
當(dāng)直線y=kx經(jīng)過(guò)E(1,1-)時(shí),k=1-,
當(dāng)直線y=kx經(jīng)過(guò)F(-1,3-),k=-3+,
綜上所述,滿足條件的k的值為-3+或1-.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解方程
(1)x2+1=3x
(2)(x﹣2)(x﹣3)=12
(3)(2x﹣3)2+x(2x﹣3)=0(因式分解法)
(4)2x2﹣4x﹣1=0(用配方法).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】目前“微信”、“支付寶”、“共享單車(chē)”和“網(wǎng)購(gòu)”給我們的生活帶來(lái)了很多便利,初二數(shù)學(xué)小組在校內(nèi)對(duì)“你最認(rèn)可的四大新生事物”進(jìn)行調(diào)查,隨機(jī)調(diào)查了m人(每名學(xué)生必選一種且只能從這四種中選擇一種)并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.
(1)根據(jù)圖中信息求出m= ,n= ;
(2)請(qǐng)你幫助他們將這兩個(gè)統(tǒng)計(jì)圖補(bǔ)全;
(3)根據(jù)抽樣調(diào)查的結(jié)果,請(qǐng)估算全校2000名學(xué)生中,大約有多少人最認(rèn)可“微信”這一新生事物?
(4)已知A、B兩位同學(xué)都最認(rèn)可“微信”,C同學(xué)最認(rèn)可“支付寶”D同學(xué)最認(rèn)可“網(wǎng)購(gòu)”從這四名同學(xué)中抽取兩名同學(xué),請(qǐng)你通過(guò)樹(shù)狀圖或表格,求出這兩位同學(xué)最認(rèn)可的新生事物不一樣的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,對(duì)角線AC與BD交于點(diǎn)O,若增加一個(gè)條件,使ABCD成為菱形,下列給出的條件不正確的是( 。
A.AB=ADB.AC⊥BDC.AC=BDD.AD=CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是拋物線型拱橋,當(dāng)拱頂離水面8m時(shí),水面寬AB為12m.當(dāng)水面上升6m時(shí)達(dá)到警戒水位,此時(shí)拱橋內(nèi)的水面寬度是多少m?
下面給出了解決這個(gè)問(wèn)題的兩種方法,請(qǐng)補(bǔ)充完整:
方法一:如圖1,以點(diǎn)A為原點(diǎn),AB所在直線為x軸,建立平面直角坐標(biāo)系xOy,
此時(shí)點(diǎn)B的坐標(biāo)為( , ),拋物線的頂點(diǎn)坐標(biāo)為( , ),
可求這條拋物線所表示的二次函數(shù)的解析式為 .
當(dāng)y=6時(shí),求出此時(shí)自變量x的取值,即可解決這個(gè)問(wèn)題.
方法二:如圖2,以拋物線頂點(diǎn)為原點(diǎn),對(duì)稱軸為y軸,建立平面直角坐標(biāo)系xOy,
這時(shí)這條拋物線所表示的二次函數(shù)的解析式為 .
當(dāng)y= 時(shí),求出此時(shí)自變量x的取值為 ,即可解決這個(gè)問(wèn)題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】通過(guò)類比聯(lián)想、引申拓展研究典型題目,可達(dá)到解一題知一類的目的.下面是一個(gè)案例.
原題:如圖①,點(diǎn)分別在正方形的邊上,,連接,則,試說(shuō)明理由.
(1)思路梳理
因?yàn)?/span>,所以把繞點(diǎn)逆時(shí)針旋轉(zhuǎn)90°至,可使與 重合.因?yàn)?/span>,所以,點(diǎn)共線.
根據(jù) ,易證 ,得.請(qǐng)證明.
(2)類比引申
如圖②,四邊形中,,,點(diǎn)分別在邊上,.若都不是直角,則當(dāng)
(3)聯(lián)想拓展
如圖③,在中,,點(diǎn)均在邊上,且.猜想應(yīng)滿足的等量關(guān)系,并寫(xiě)出證明過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知⊙O的直徑CD=10cm,AB是⊙O的弦,AB⊥CD,垂足為M,且AB=8cm,則AC的長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】商場(chǎng)某種商品平均每天可銷(xiāo)售30件,每件盈利500元,為了盡快減少庫(kù)存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施.經(jīng)調(diào)查發(fā)現(xiàn),每件商品每降價(jià)10元,商場(chǎng)每天可多售出2件.設(shè)每件商品降價(jià)x元(x是10的整數(shù)倍),據(jù)此信息,請(qǐng)回答:
(1)商場(chǎng)日銷(xiāo)量增加 件,每件商品盈利 元;(用含x的代數(shù)式表示).
(2)在上述條件不變且銷(xiāo)售正常的情況下,每件商品降價(jià)多少元時(shí),商場(chǎng)日盈利可達(dá)到21000元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在AC⊥BC,過(guò)點(diǎn)C的直線MN∥AB,D為AB邊上一點(diǎn),且AD=4,過(guò)點(diǎn)D作DE⊥BC,交直線MN于E,垂足為F,連接CD、BE.
(1)求CE的長(zhǎng);
(2)當(dāng)D在AB中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說(shuō)明你的理由;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com