【題目】商場(chǎng)某種商品平均每天可銷售30件,每件盈利500元,為了盡快減少庫(kù)存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施.經(jīng)調(diào)查發(fā)現(xiàn),每件商品每降價(jià)10元,商場(chǎng)每天可多售出2件.設(shè)每件商品降價(jià)x元(x是10的整數(shù)倍),據(jù)此信息,請(qǐng)回答:
(1)商場(chǎng)日銷量增加 件,每件商品盈利 元;(用含x的代數(shù)式表示).
(2)在上述條件不變且銷售正常的情況下,每件商品降價(jià)多少元時(shí),商場(chǎng)日盈利可達(dá)到21000元?
【答案】(1),(500﹣x);(2)每件商品降價(jià)200元,商場(chǎng)日盈利可達(dá)21000元.
【解析】
(1)由于降價(jià)10元,可多售出2件,降價(jià)x元,可多售出件,每件盈利的錢數(shù)為500-x;
(2)根據(jù)等量關(guān)系為:每件商品的盈利×可賣出商品的件數(shù)=21000,把相關(guān)數(shù)值代入計(jì)算得到合適的解即可.
(1)由題意,可得商場(chǎng)日銷量增加件,每件商品盈利(500﹣x)元;
故答案為:,(500﹣x);
(2)由題意得:(500﹣x)(30+)=21000,
化簡(jiǎn)得:x2﹣350x+30000=0,
即(x﹣150)(x﹣200)=0
解得:x1=150,x2=200,
∵為了盡快減少庫(kù)存,
∴x=200,
答:每件商品降價(jià)200元,商場(chǎng)日盈利可達(dá)21000元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,以A(5,1)為圓心,2個(gè)單位長(zhǎng)度為半徑的⊙A交軸于點(diǎn)B、C.解答下列問(wèn)題:
(1)將⊙A向下平移 個(gè)單位長(zhǎng)度與軸相切;
(2) 將⊙A向左平移得到⊙A1,當(dāng)⊙A1與軸首次相切,此時(shí)陰影部分的面積S= ;
(3)將⊙A向左平移 個(gè)單位長(zhǎng)度與坐標(biāo)軸有三個(gè)公共點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于平面直角坐標(biāo)系xOy中的圖形P和直線AB,給出如下定義:M為圖形P上任意一點(diǎn),N為直線AB上任意一點(diǎn),如果M,N兩點(diǎn)間的距離有最小值,那么稱這個(gè)最小值為圖形P和直線AB之間的“確定距離”,記作d(P,直線AB).
已知A(2,0),B(0,2).
(1)求d(點(diǎn)O,直線AB);
(2)⊙T的圓心為半徑為1,若d(⊙T,直線AB)≤1,直接寫出t的取值范圍;
(3)記函數(shù)的圖象為圖形Q.若d(Q,直線AB)=1,直接寫出k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】超市銷售某種兒童玩具,如果每件利潤(rùn)為40元(市場(chǎng)管理部門規(guī)定,該種玩具每件利潤(rùn)不能超過(guò)60元),每天可售出50件.根據(jù)市場(chǎng)調(diào)查發(fā)現(xiàn),銷售單價(jià)每增加2元,每天銷售量會(huì)減少1件.當(dāng)銷售單價(jià)為多少時(shí),超市每天銷售這種玩具可獲利潤(rùn)2250元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC,∠B=90度,AC將梯形分成兩個(gè)三角形,其中△ACD是周長(zhǎng)為18cm的等邊三角形,則該梯形的中位線的長(zhǎng)是( 。
A. 9cm B. 12cm C. cm D. 18cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,,點(diǎn)從點(diǎn)開(kāi)始沿邊向點(diǎn)以的速度移動(dòng),點(diǎn)從點(diǎn)開(kāi)始沿邊向點(diǎn)以的速度移動(dòng).
(1)如果分別從同時(shí)出發(fā),那么幾秒后,的面積等于?
(2)如果分別從同時(shí)出發(fā),的面積能否等于?
(3)如果分別從同時(shí)出發(fā),那么幾秒后,的長(zhǎng)度等于?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)的部分圖象如圖所示,圖象過(guò)點(diǎn)(,),對(duì)稱軸為直線,下列結(jié)論:(1);(2);(3);(4)若點(diǎn)(,),點(diǎn)(,),點(diǎn)(,)在該函數(shù)圖象上,則,其中正確的結(jié)論有( )
A.1個(gè)B.2C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1是某公園一塊草坪上的自動(dòng)旋轉(zhuǎn)噴水裝置,這種旋轉(zhuǎn)噴水裝置的旋轉(zhuǎn)角度為240°,它的噴灌區(qū)是一個(gè)扇形.小濤同學(xué)想了解這種裝置能夠噴灌的草坪面積,他測(cè)量出了相關(guān)數(shù)據(jù),并畫出了示意圖.如圖2,A,B兩點(diǎn)的距離為18米,求這種裝置能夠噴灌的草坪面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果兩個(gè)二次函數(shù)的圖象關(guān)于y軸對(duì)稱,我們就稱這兩個(gè)二次函數(shù)互為“關(guān)于y軸對(duì)稱二次函數(shù)”,如圖所示二次函數(shù)y1=x2+2x+2與y2=x2﹣2x+2是“關(guān)于y軸對(duì)稱二次函數(shù)”.
(1)直接寫出兩條圖中“關(guān)于y軸對(duì)稱二次函數(shù)”圖象所具有的共同特點(diǎn).
(2)二次函數(shù)y=2(x+2)2+1的“關(guān)于y軸對(duì)稱二次函數(shù)”解析式為 ;二次函數(shù)y=a(x﹣h)2+k的“關(guān)于y軸對(duì)稱二次函數(shù)”解析式為 ;
(3)平面直角坐標(biāo)系中,記“關(guān)于y軸對(duì)稱二次函數(shù)”的圖象與y軸的交點(diǎn)為A,它們的兩個(gè)頂點(diǎn)分別為B,C,且BC=6,順次連接點(diǎn)A,B,O,C得到一個(gè)面積為24的菱形,求“關(guān)于y軸對(duì)稱二次函數(shù)”的函數(shù)表達(dá)式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com