【題目】問題:如圖(1),點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EF、FD之間的數(shù)量關(guān)系.
【發(fā)現(xiàn)證明】小聰把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,從而發(fā)現(xiàn)EF=BE+FD,請你利用圖(1)證明上述結(jié)論.
【類比引申】如圖(2),四邊形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,點(diǎn)E、F分別在邊BC、CD上,則當(dāng)∠EAF與∠BAD滿足 關(guān)系時(shí),仍有EF=BE+FD.
【探究應(yīng)用】如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分別有景點(diǎn)E、F,且AE⊥AD,DF=米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長(結(jié)果取整數(shù),參考數(shù)據(jù):=1.41, =1.73)
【答案】【發(fā)現(xiàn)證明】證明見解析;【類比引申】∠BAD=2∠EAF.【探究應(yīng)用】長約為109米.
【解析】
試題分析:【發(fā)現(xiàn)證明】根據(jù)旋轉(zhuǎn)的性質(zhì)可以得到△ADG≌△ABE,則GF=BE+DF,只要再證明△AFG≌△AFE即可.
【類比引申】延長CB至M,使BM=DF,連接AM,證△ADF≌△ABM,證△FAE≌△MAE,即可得出答案;
【探究應(yīng)用】利用等邊三角形的判定與性質(zhì)得到△ABE是等邊三角形,則BE=AB=80米.把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)150°至△ADG,只要再證明∠BAD=2∠EAF即可得出EF=BE+FD.
試題解析:【發(fā)現(xiàn)證明】如圖(1),
∵△ADG≌△ABE,
∴AG=AE,∠DAG=∠BAE,DG=BE,
又∵∠EAF=45°,即∠DAF+∠BEA=∠EAF=45°,
∴∠GAF=∠FAE,
在△GAF和△FAE中,
,
∴△AFG≌△AFE(SAS).
∴GF=EF.
又∵DG=BE,
∴GF=BE+DF,
∴BE+DF=EF.
【類比引申】∠BAD=2∠EAF.
理由如下:如圖(2),延長CB至M,使BM=DF,連接AM,
∵∠ABC+∠D=180°,∠ABC+∠ABM=180°,
∴∠D=∠ABM,
在△ABM和△ADF中,
,
∴△ABM≌△ADF(SAS),
∴AF=AM,∠DAF=∠BAM,
∵∠BAD=2∠EAF,
∴∠DAF+∠BAE=∠EAF,
∴∠EAB+∠BAM=∠EAM=∠EAF,
在△FAE和△MAE中,
,
∴△FAE≌△MAE(SAS),
∴EF=EM=BE+BM=BE+DF,
即EF=BE+DF.
【探究應(yīng)用】如圖3,把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)150°至△ADG,連接AF,過A作AH⊥GD,垂足為H.
∵∠BAD=150°,∠DAE=90°,
∴∠BAE=60°.
又∵∠B=60°,
∴△ABE是等邊三角形,
∴BE=AB=80米.
根據(jù)旋轉(zhuǎn)的性質(zhì)得到:∠ADG=∠B=60°,
又∵∠ADF=120°,
∴∠GDF=180°,即點(diǎn)G在 CD的延長線上.
易得,△ADG≌△ABE,
∴AG=AE,∠DAG=∠BAE,DG=BE,
又∵AH=80×=40,HF=HD+DF=40+40(-1)=40
故∠HAF=45°,
∴∠DAF=∠HAF-∠HAD=45°-30°=15°
從而∠EAF=∠EAD-∠DAF=90°-15°=75°
又∵∠BAD=150°=2×75°=2∠EAF
∴根據(jù)上述推論有:EF=BE+DF=80+40(-1)≈109(米),即這條道路EF的長約為109米.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各組數(shù)中相等的是
A. ﹣(﹣2)和|﹣2| B. +(﹣2)和﹣(﹣2)
C. ﹣(﹣2)和(﹣2) D. ﹣(﹣2)和﹣|﹣2|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)軸上表示–2和10兩點(diǎn)之間插入三個(gè)點(diǎn),使這5個(gè)點(diǎn)每相鄰兩點(diǎn)之間的距離相等,求這三個(gè)點(diǎn)所表示的數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算中,正確的是( 。
A.a2a6=a12
B.(a3)3=a6
C.(﹣2a)3=6a3
D.(a2)3=a6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列每組數(shù)分別是三根小木棒的長度(cm),用它們能擺成三角形的是( 。
A.3 4 9
B.2 3 5
C.5 12 13
D.5 5 11
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點(diǎn)P在BA的延長線上,PD切⊙O于點(diǎn)D,過點(diǎn)B作BE垂直于PD,交PD的延長線于點(diǎn)C,連接AD并延長,交BE于點(diǎn)E.
(1)求證:AB=BE;
(2)若PA=2,cosB=,求⊙O半徑的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地氣象統(tǒng)計(jì)資料表明,高度每增加1 000m,氣溫就降低大約6度. 現(xiàn)在地面的氣溫是35度,則10 000m高空的氣溫大約是 __________ 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知(2x-21)(3x-7)-(3x-7)(x-13)可分解因式為(3x+a)(x+b),其中a,b均為整數(shù),則a+3b=。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com