精英家教網 > 初中數學 > 題目詳情

【題目】某電子廠商投產一種新型電子產品,每件制造成本為18元,試銷過程中發(fā)現,每月銷售量y(萬件)與銷售單價x(元)之間的關系可以近似地看作一次函數(利潤=售價﹣制造成本)

(1)寫出每月的利潤w(萬元)與銷售單價x(元)之間的函數關系式;

(2)當銷售單價為多少元時,廠商每月能獲得350萬元的利潤?

(3)當銷售單價為多少元時,廠商每月能獲得最大利潤?最大利潤是多少?

【答案】(1)w= -2x2+136x-1800;(2)銷售單價定為25 元或43 元,廠商每月能獲得350萬元的利潤;(3)當銷售單價為34 元時,每月能獲得最大利潤,最大利潤是512 萬元.

【解析】

(1)根據每月的利潤z=(x-18)y,再把y=-2x+100代入即可求出zx之間的函數解析式,

(2)把z=350代入z=-2x2+136x-1800,解這個方程即可;

(3)把函數關系式變形為頂點式運用二次函數的性質求出最值.

(1)w= (x -18 )y= (x -18 )(-2x+100 )= -2x2+136x-1800 ,

∴w x 之間的函數解析式為w= -2x2+136x-1800 .

(2)由w=350 ,得350= -2x2+136x -1800 ,

解得x1=25 ,x2=43

所以,銷售單價定為25 元或43 元,廠商每月能獲得350萬元的利潤.

(3)w =-2x2+136x-1800 配方,得w= -2(x-34 )2+512 ,

∵a=﹣2<0,∴函數有最大值

x=34時,w最大值為512

因此,當銷售單價為34 元時,每月能獲得最大利潤,最大利潤是512 萬元.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】(本小題滿分10分)

如圖,在ABCD中,以點A為圓心,AB長為半徑畫弧交AD于點F;再分別以點B、F為圓心,大于BF的相同長為半徑畫弧,兩弧交于點P;連接AP并延長交BC于點E,連接EF,則所得四邊形ABEF是菱形.

(1)根據以上尺規(guī)作圖的過程,求證四邊形ABEF是菱形;

(2)若菱形ABEF的周長為16,AE=4,求C的大。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直角梯形ABCD中,∠BAD=∠CDA=90°,AB=,CD=2過A,B,D三點的O分別交BC,CD于點E,M,且CE=2,下列結論:①DM=CM;②弧AB=弧EM;③☉O的直徑為2;④AE=.其中正確的結論是( )

A. ①②③ B. ①②④ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一次函數y=ax+b與二次函數y=ax2+bx+c在同一坐標系中的圖像可能是 ( )

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀下列例題的解答過程:解方程:3(x﹣2)2+7(x﹣2)+4=0.

解:設 x﹣2=y,則原方程化為:3y2+7y+4=0.

∵a=3,b=7,c=4,∴b2﹣4ac=72﹣4×3×4=1.

∴y= =.∴y1=﹣1,y2=﹣

y=﹣1 時,x﹣2=﹣1,∴x=1;

y=﹣,x﹣2=﹣,∴x=

∴原方程的解為:x1=1,x2=

(1)請仿照上面的例題解一元二次方程:2(x﹣3)2﹣5(x﹣3)﹣7=0;

(2)若(a2+b2)(a2+b2﹣2)=3,求代數式 a2+b2的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點A 的坐標是(4,0),并且0A=OC=4OB,動點P在過A,B,C三點的拋物線上.

(1) 求拋物線的解析式;

(2)過動點PPE垂直于y軸于點E,交直線AC于點D,過點Dx軸的垂線,垂足為F,連接EF,當線段EF的長度最短時,求出點P的坐標;

(3) 是否存在點P,使得ACP是以AC為直角邊的直角三角形? 若存在,求出所有符合條件的點P的坐標; 若不存在,說明理由

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,EF是四邊形ABCD的對角線AC上的兩點,AF=CEDF=BE,DFBE

求證:(1)AFD≌△CEB.(2)四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】⊙O的直徑為2,AB,AC為⊙O的兩條弦,AB=,AC=,則∠BAC=_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1所示,一次函數y=kx+b的圖象與反比例函數的圖象交于, 兩點.

1)求一次函數和反比例函數的解析式;

2)設點是反比例函數圖象上兩點,,求的值;

3)若Mx1,y1)和Nx2,y2)兩點在直線AB上,如圖2所示,過M、N兩點分別作y軸的平行線交雙曲線于E、F,已知﹣3x10,x21,請?zhí)骄慨?/span>x1、x2滿足什么關系時,MNEF.

查看答案和解析>>

同步練習冊答案