【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(0,4),點(diǎn)B的坐標(biāo)為(4,0),點(diǎn)C的坐標(biāo)為(﹣4,0),點(diǎn)P在AB上,連結(jié)CP與y軸交于點(diǎn)D,連結(jié)BD.過(guò)P,D,B三點(diǎn)作⊙Q與y軸的另一個(gè)交點(diǎn)為E,延長(zhǎng)DQ交⊙Q于點(diǎn)F,連結(jié)EF,BF.
(1)求直線(xiàn)AB的函數(shù)解析式;
(2)求證:∠BDE=∠ADP;
(3)設(shè)DE=x,DF=y.請(qǐng)求出y關(guān)于x的函數(shù)解析式;
【答案】(1)y=﹣x+4;(2)詳見(jiàn)解析;(3)y=x
【解析】
(1)設(shè)直線(xiàn)AB的函數(shù)解析式為y=kx+4,把點(diǎn)B的坐標(biāo)(4,0)代入即可;
(2)先證出△BDO≌△COD,得出∠BDO=∠CDO,再根據(jù)∠CDO=∠ADP,即可得出∠BDE=∠ADP;
(3)先連結(jié)PE,根據(jù)三角形外角的性質(zhì)得∠ADP=∠DEP+∠DPE,∠BDE=∠ABD+∠OAB,由圓周角定理得∠DEP=∠ABD,由(2)知∠ADP=∠BDE,得出∠DPE=∠OAB,再證出∠DFE=∠DPE=45°,由直徑所對(duì)的圓周角是直角得∠DEF=90°,得出△DEF是等腰直角三角形,從而求出DF=DE,即y=x.
解:(1)設(shè)直線(xiàn)AB的函數(shù)解析式為y=kx+4,
代入點(diǎn)B(4,0)得:4k+4=0,
解得:k=﹣1,
則直線(xiàn)AB的函數(shù)解析式為y=﹣x+4;
(2)由已知得:
OB=OC,∠BOD=∠COD=90°,
又∵OD=OD,
∴△BOD≌△COD,
∴∠BDO=∠CDO,
∵∠CDO=∠ADP,
∴∠BDE=∠ADP;
(3)連結(jié)PE,
∵∠ADP是△DPE的一個(gè)外角,
∴∠ADP=∠DEP+∠DPE,
∵∠BDE是△ABD的一個(gè)外角,
∴∠BDE=∠ABD+∠OAB,
∵∠ADP=∠BDE,∠DEP=∠ABD,
∴∠DPE=∠OAB,
∵OA=OB=4,∠AOB=90°,
∴∠OAB=45°,
∴∠DPE=45°,
∴∠DFE=∠DPE=45°,
∵DF是⊙Q的直徑,
∴∠DEF=90°,
∴△DEF是等腰直角三角形,
∴DF=DE,即y=x;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 如圖,有兩個(gè)可以自由轉(zhuǎn)動(dòng)的均勻轉(zhuǎn)盤(pán)轉(zhuǎn)盤(pán)A被平均分成3等份,分別標(biāo)上三個(gè)數(shù)字;轉(zhuǎn)盤(pán)B被平均分成4等份,分別標(biāo)上四個(gè)數(shù)字.有人為甲、乙兩人設(shè)計(jì)了一個(gè)游戲規(guī)則;自由轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)A與B,轉(zhuǎn)盤(pán)停止后,指針各指向一個(gè)數(shù)字,將指針?biāo)傅膬蓚(gè)數(shù)字相加,如果和是6,那么甲獲勝,否則為乙獲勝.你認(rèn)為這樣的游戲規(guī)則是否公平?如果公平,請(qǐng)說(shuō)明理由;如果不公平,怎樣修改規(guī)則才能使游戲?qū)﹄p方公平?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線(xiàn)y=﹣x2+x+m﹣1交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,若A點(diǎn)坐標(biāo)為(x1,0),B點(diǎn)坐標(biāo)為(x2,0)(x1≠x2).
(1)求m的取值范圍;
(2)如圖1,若x12+x22=17,求拋物線(xiàn)的解析式;
(3)在(2)的條件下,請(qǐng)解答下列兩個(gè)問(wèn)題:
①如圖1,請(qǐng)連接AC,求證:△ACB為直角三角形.
②如圖2,若D(1,n)在拋物線(xiàn)上,過(guò)點(diǎn)A的直線(xiàn)y=﹣x﹣1交(2)中的拋物線(xiàn)于點(diǎn)E,那么在x軸上點(diǎn)B的左側(cè)是否存在點(diǎn)P,使以P、B、D為頂點(diǎn)的三角形與△ABE相似?若存在,求出P點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀以下材料:有這樣一個(gè)問(wèn)題:關(guān)于x的一元二次方程ax2+bx+c=0(a>0)有兩個(gè)不相等的且非零的實(shí)數(shù)根.探究a,b,c滿(mǎn)足的條件.
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),認(rèn)為可以從二次函數(shù)的角度看一元二次方程,下面是小明的探究過(guò)程:
①設(shè)一元二次方程ax2+bx+c=0(a>0)對(duì)應(yīng)的二次函數(shù)為y=ax2+bx+c(a>0);
②借助二次函數(shù)圖象,可以得到相應(yīng)的一元二次中a,b,c滿(mǎn)足的條件,列表如下:
方程根的幾何意義:
(1)參考小明的做法,把上述表格補(bǔ)充完整;
(2)若一元二次方程mx2﹣(2m+3)x﹣4m=0有一個(gè)負(fù)實(shí)根,一個(gè)正實(shí)根,且負(fù)實(shí)根大于﹣1,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于點(diǎn)E,在BC上截取BF=AE,連接AF交CE于點(diǎn)G,連接DG交AC于點(diǎn)H,過(guò)點(diǎn)A作AN⊥BC,垂足為N,AN交CE于點(diǎn)M.則下列結(jié)論;①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正確的序號(hào)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四邊形 ABCD 中,E 為 BC 邊中點(diǎn).
(Ⅰ)已知:如圖,若 AE 平分∠BAD,∠AED=90°,點(diǎn) F 為 AD 上一點(diǎn),AF=AB.求證:(1)△ABE≌AFE;(2)AD=AB+CD
(Ⅱ)已知:如圖,若 AE 平分∠BAD,DE 平分∠ADC,∠AED=120°,點(diǎn) F,G 均為 AD上的點(diǎn),AF=AB,GD=CD.求證:(1)△GEF 為等邊三角形;(2)AD=AB+ BC+CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)如圖所示,下列結(jié)論中:
①4ac-b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠-1).
其中正確的結(jié)論有( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,如果某點(diǎn)的橫坐標(biāo)與縱坐標(biāo)的和為10,則稱(chēng)此點(diǎn)為“合適點(diǎn)”例如,點(diǎn)(1,9),(﹣2019,2029)…都是“合適點(diǎn)”.
(1)求函數(shù)y=2x+1的圖象上的“合適點(diǎn)”的坐標(biāo);
(2)求二次函數(shù)y=x2﹣5x﹣2的圖象上的兩個(gè)“合適點(diǎn)”A,B之間線(xiàn)段的長(zhǎng);
(3)若二次函數(shù)y=ax2+4x+c的圖象上有且只有一個(gè)合適點(diǎn)”,其坐標(biāo)為(4,6),求二次函數(shù)y=ax2+4x+c的表達(dá)式;
(4)我們將拋物線(xiàn)y=2(x﹣n)2﹣3在x軸下方的圖象記為G1,在x軸及x軸上方圖象記為G2,現(xiàn)將G1沿x軸向上翻折得到G3,圖象G2和圖象G3兩部分組成的記為G,當(dāng)圖象G上恰有兩個(gè)“合適點(diǎn)”時(shí),直接寫(xiě)出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)的圖象分別交x軸、y軸于C,D兩點(diǎn),交反比例函數(shù)圖象于A(,4),B(3,m)兩點(diǎn).
(1)求直線(xiàn)CD的表達(dá)式;
(2)點(diǎn)E是線(xiàn)段OD上一點(diǎn),若,求E點(diǎn)的坐標(biāo);
(3)請(qǐng)你根據(jù)圖象直接寫(xiě)出不等式的解集.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com