【題目】如圖,所示的正方形網(wǎng)格中,△ABC的頂點(diǎn)均在格點(diǎn)上,在所給平面直角坐標(biāo)系中解答下列問題:
(1)畫出△ABC關(guān)于x軸對(duì)稱的△A1B1C1
(2)作出將△ABC繞原點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)90°后所得的△A2B2C2
(3)寫出點(diǎn)A1、A2的坐標(biāo).

【答案】解:(1)如圖,△A1B1C1為所作;
(2)如圖,△A2B2C2為所作;

(3)點(diǎn)A1、A2的坐標(biāo)分別為((﹣1,0),((0,﹣1).
【解析】(1)利用關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)特征寫出點(diǎn)A、B、C的對(duì)應(yīng)點(diǎn)A1、B1、C1的坐標(biāo),然后描點(diǎn)即可;
(2)利用網(wǎng)格特點(diǎn)和旋轉(zhuǎn)的性質(zhì)畫出點(diǎn)A、B、C的對(duì)應(yīng)點(diǎn)A2、B2、C2 , 從而得到△A2B2C2;
(3)由所畫圖形易得點(diǎn)A1、A2的坐標(biāo).
【考點(diǎn)精析】利用作軸對(duì)稱圖形對(duì)題目進(jìn)行判斷即可得到答案,需要熟知畫對(duì)稱軸圖形的方法:①標(biāo)出關(guān)鍵點(diǎn)②數(shù)方格,標(biāo)出對(duì)稱點(diǎn)③依次連線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,給出下列5個(gè)條件:①AB∥CD;②OA=OC;③AB=CD;④∠BAD=∠DCB;⑤AD∥BC,

從以上5個(gè)條件中任選2個(gè)條件為一組,能判定四邊形ABCD是平行四邊形的有(  。┙M.

A. 4 B. 5 C. 6 D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按照規(guī)律填上所缺的單項(xiàng)式并回答問題:

(1)a、﹣2a2、3a3、﹣4a4,      ;

(2)試寫出第2007個(gè)單項(xiàng)式   ;第2008個(gè)單項(xiàng)式   ;

(3)試寫出第n個(gè)單項(xiàng)式   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,鐵路上A,B兩點(diǎn)相距25km,C,D為兩莊,DAABA,CBABB,已知DA=15km,CB=10km,現(xiàn)在要在鐵路AB上建一個(gè)土特產(chǎn)品收購(gòu)站E,使得C,D兩村到E站的距離相等.問:

(1)在離A站多少km處?

(2)判定三角形DEC的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:點(diǎn)M、P、N、Q依次是正方形ABCD的邊AB、BC、CD、DA上一點(diǎn)(不與正方形的頂點(diǎn)重合),給出如下結(jié)論:
①M(fèi)N⊥PQ,則MN=PQ;
②MN=PQ,則MN⊥PQ;
③△AMQ≌△CNP,則△BMP≌△DNQ;
④△AMQ∽△CNP,則△BMP∽△DNQ
其中所有正確的結(jié)論的序號(hào)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,E、F分別為平行四邊形ABCDAB、CD的中點(diǎn),CB的延長(zhǎng)線于點(diǎn)G.

求證:;,判斷四邊形DEBF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某中學(xué)準(zhǔn)備在校園里利用圍墻的一段,其余三面用圍欄,圍成一個(gè)矩形花園ABCD(圍墻MN最長(zhǎng)可利用25m).現(xiàn)計(jì)劃用50m長(zhǎng)的圍欄,請(qǐng)你設(shè)計(jì)一種圍法,使矩形花園的面積為300m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,先找到長(zhǎng)方形紙的寬DC的中點(diǎn)E,將∠CE點(diǎn)折起任意一個(gè)角,折痕是EF,再將∠DE點(diǎn)折起,使D′EC′E重合,折痕是GE,請(qǐng)?zhí)剿飨铝袉栴}:

(1)FEC′和∠GED′互為余角嗎?為什么?

(2)GEF是直角嗎?為什么?

(3)在上述折紙圖形中,還有哪些互為余角?哪些互為補(bǔ)角?(各寫出兩對(duì)即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】菱形ABCD中,∠B=60°,點(diǎn)E在邊BC上,點(diǎn)F在邊CD上.
(1)如圖1,若E是BC的中點(diǎn),∠AEF=60°,求證:BE=DF;
(2)如圖2,若∠EAF=60°,求證:△AEF是等邊三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案