【題目】已知在紙面上有一數(shù)軸(如圖),折疊紙面.

1)若1表示的點(diǎn)與﹣1表示的點(diǎn)重合,則﹣2.5表示的點(diǎn)與數(shù)   表示的點(diǎn)重合;

2)若﹣1表示的點(diǎn)與5表示的點(diǎn)重合,回答以下問題:

5表示的點(diǎn)與數(shù)   表示的點(diǎn)重合;

②若數(shù)軸上A、B兩點(diǎn)之間的距離為9AB的左側(cè)),且A、B兩點(diǎn)經(jīng)折疊后重合,求AB兩點(diǎn)表示的數(shù)是多少?

【答案】12.5;(2)①﹣1;②A、B兩點(diǎn)表示的數(shù)分別為﹣2.56.5

【解析】

1)根據(jù)原點(diǎn)O是對(duì)稱中心,對(duì)稱的兩點(diǎn)互為相反數(shù),即可解決問題.

2)①5表示的點(diǎn)與數(shù)﹣1表示的點(diǎn)重合.

②求出對(duì)稱中心表示的數(shù),再根據(jù)AB9,即可解決問題.

解:(1)若1表示的點(diǎn)與﹣1表示的點(diǎn)重合,則﹣2.5表示的點(diǎn)與數(shù)2.5表示的點(diǎn)重合.

故答案為2.5

2)①5表示的點(diǎn)與數(shù)﹣1表示的點(diǎn)重合,

故答案為﹣1

②由題意對(duì)稱中心表示的數(shù)為2,

AB9,

A、B兩點(diǎn)表示的數(shù)分別為﹣2.56.5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的材料,解答后面給出的問題:

兩個(gè)含有二次根式的代數(shù)式相乘,如果它們的積不含有二次根式,我們就說這兩個(gè)代數(shù)式互為有理化因式,例如+1-1.

(1)請(qǐng)你再寫出兩個(gè)含有二次根式的代數(shù)式,使它們互為有理化因式:__________________;

這樣,化簡一個(gè)分母含有二次根式的式子時(shí),采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:,.

(2)請(qǐng)仿照上面給出的方法化簡:;

(3)計(jì)算:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(9,6),ABy軸,垂足為B,點(diǎn)P從原點(diǎn)O出發(fā)向x軸正方向運(yùn)動(dòng),同時(shí),點(diǎn)Q從點(diǎn)A出發(fā)向點(diǎn)B運(yùn)動(dòng),當(dāng)點(diǎn)Q到達(dá)點(diǎn)B時(shí),點(diǎn)P、Q同時(shí)停止運(yùn)動(dòng),若點(diǎn)P與點(diǎn)Q的速度之比為1:2,則下列說法正確的是( 。

A. 線段PQ始終經(jīng)過點(diǎn)(2,3)

B. 線段PQ始終經(jīng)過點(diǎn)(3,2)

C. 線段PQ始終經(jīng)過點(diǎn)(2,2)

D. 線段PQ不可能始終經(jīng)過某一定點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P為定角∠AOB的平分線上的一個(gè)定點(diǎn),且∠MPN∠AOB互補(bǔ),若∠MPN在繞點(diǎn)P旋轉(zhuǎn)的過程中,其兩邊分別與OA、OB相交于M、N兩點(diǎn),則以下結(jié)論:(1PM=PN恒成立;(2OM+ON的值不變;(3)四邊形PMON的面積不變;(4MN的長不變,其中正確的個(gè)數(shù)為(  )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(探索發(fā)現(xiàn))有絕對(duì)值的定義可得,數(shù)軸上表示數(shù)的點(diǎn)到原點(diǎn)的距離為.小麗進(jìn)一步探究發(fā)現(xiàn),在數(shù)軸上,表示35的兩點(diǎn)之間的距離為;表示5的兩點(diǎn)之間的距離為;表示的兩點(diǎn)之間的距離為.

(概括總結(jié))根據(jù)以上過程可以得出:數(shù)軸上,表示數(shù)和數(shù)的兩點(diǎn)之間的距離為.

(問題解決)

1)若,則________;

2)若,則________;

3)若,則________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,用同樣規(guī)格的黑白兩色正方形瓷磚鋪設(shè)長方形地面.請(qǐng)觀察各圖形并解答有關(guān)問題:

(1)在第個(gè)圖形中,每一橫行共有 塊瓷磚,每一豎列共有 塊瓷磚(均用含的代數(shù)式表示);

(2)設(shè)鋪設(shè)地面所用瓷磚的總塊數(shù)為,用(1)中的表示;

(3)當(dāng)=20時(shí),求的值;

(4)若黑瓷磚每塊4元,白瓷磚每塊3元,在問題(3)中,共需花多少元購買瓷磚?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在RtABC中,∠BAC=90°,AB≥AC,D,E分別為AC,BC邊上的點(diǎn)(不包括端點(diǎn)),且==m,連結(jié)AE,過點(diǎn)DDMAE,垂足為點(diǎn)M,延長DMAB于點(diǎn)F.

(1)如圖1,過點(diǎn)EEHAB于點(diǎn)H,連結(jié)DH.

①求證:四邊形DHEC是平行四邊形;

②若m=,求證:AE=DF;

(2)如圖2,若m=,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一兒童服裝商店在銷售中發(fā)現(xiàn):某品牌童裝平均每天可售出20件,每件盈利40元.為了迎接“六·一”兒童節(jié),商店決定采取適當(dāng)?shù)慕祪r(jià)措施,擴(kuò)大銷售量,增加盈利,盡快減少庫存.經(jīng)市場調(diào)查發(fā)現(xiàn):如果每件童裝降價(jià)1元,那么平均每天就可多售出2件.要想平均每天銷售這種童裝上盈利1200元,那么每件童裝應(yīng)降價(jià)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

8+(﹣10+(﹣2)﹣(﹣5

235|3|

③(﹣1+1.25+(﹣8.5+10

④(×(﹣12

⑤(﹣199×5(用簡便方法計(jì)算)

10×(﹣)﹣+(﹣3×(﹣

查看答案和解析>>

同步練習(xí)冊(cè)答案