【題目】如圖,,,E是AB上的一點,且,.
求證:≌;
若,,請求出CD的長.
【答案】(1)見解析;(2) 10.
【解析】
(1)根據(jù)已知可得到∠A=∠B=90°,DE=CE,AD=BE從而利用HL判定兩三角形全等;
(2)由三角形全等可得到對應(yīng)角相等,對應(yīng)邊相等,由已知可推出∠DEC=90°,由已知我們可求得BE、AE的長,再利用勾股定理求得ED、DC的長.
解:(1)∵AD∥BC,∠A=90°,∠1=∠2,
∴∠A=∠B=90°,DE=CE.
∵AD=BE,
∴△ADE≌△BEC.
(2)由△ADE≌△BEC得∠AED=∠BCE,AD=BE.
∴∠AED+∠BEC=∠BCE+∠BEC=90°.
∴∠DEC=90°.
又∵AD=6,AB=14,
∴BE=AD=6,AE=14-6=8.
∵∠1=∠2,
∴ED=EC==10.
∴DC==10.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(題文)如圖,Rt△ABC中,∠ACB=90°,∠ABC=30°,△ABD、△BCE均為等邊三角形,DE、AB交于點F,AF=3,則△ACE的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D為AC上一點,且CD=CB,以BC為直徑作⊙O,交BD于點E,連接CE,過D作DF⊥AB于點F,∠BCD=2∠ABD.
(1)求證:AB是⊙O的切線;
(2)若∠A=60°,DF= ,求⊙O的直徑BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有四張正面分別標(biāo)有數(shù)字1,2,3,4的不透明卡片,它們除數(shù)字外其余全部相同,現(xiàn)將它們背面朝上洗均勻.
(1)隨機(jī)抽取一張卡片,求抽到數(shù)字“2”的概率;
(2)隨機(jī)抽取一張卡片,然后不放回,再隨機(jī)抽取一張卡片,請用列表或畫樹狀圖的方法求出第一次抽到數(shù)字“1”且第二次抽到數(shù)字“2”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了加強(qiáng)公民的節(jié)水意識,合理利用水資源,某市采用價格調(diào)控的手段達(dá)到節(jié)水的目的,該市自來水收費的價目表如下表(注:水費按月份結(jié)算,表示立方米):請根據(jù)上表的內(nèi)容解答下列問題:
(1)填空:若該戶居民月份用水,則應(yīng)收水費___________元;
(2)若該戶居民月份用水 (其中),則應(yīng)收水費多少元?
價目表
每月用水量 | 單價 |
不超過6的部分 | 2元/ |
超出6不超出10的部分 | 4元/ |
超出10的部分 | 8元/ |
(3)若該戶居民、兩個月共用水(月份用水量超過了月份),設(shè)月份用水,求該戶居民、兩個月共交水費多少元?(答案可含有)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,已知AD⊥BC,∠B=64°,∠C=56°,
(1)求∠BAD和∠DAC的度數(shù);
(2)若DE平分∠ADB,求∠AED的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】公園有一塊正方形的空地,后來從這塊空地上劃出部分區(qū)域栽種鮮花(如圖),原空地一邊減少了1m,另一邊減少了2m,剩余空地的面積為18m2 , 求原正方形空地的邊長.設(shè)原正方形的空地的邊長為xm,則可列方程為( 。
A.(x+1)(x+2)=18
B.x2﹣3x+16=0
C.(x﹣1)(x﹣2)=18
D.x2+3x+16=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)指出數(shù)軸上 A、B、C、D、E 各點分別表示什么數(shù);
(2)按從小到大順序排列,將它們用“<”號連接起來;
(3)寫出離 C 點 3 個單位的點表示的數(shù);
(4)寫出離 C 點 m 個單位的點表示的數(shù)(m>0).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com