【題目】(方法回顧)
(1)如圖1,過正方形ABCD的頂點A作一條直l交邊BC于點P,BE⊥AP于點E,DF⊥AP于點F,若DF=2.5,BE=1,則EF= .
(問題解決)
(2)如圖2,菱形ABCD的邊長為1.5,過點A作一條直線l交邊BC于點P,且∠DAP=90°,點F是AP上一點,且∠BAD+∠AFD=180°,過點B作BE⊥AB,與直線l交于點E,若EF=1,求BE的長.
(思維拓展)
(3)如圖3,在正方形ABCD中,點P在AD所在直線上的上方,AP=2,連接PB,PD,若△PAD的面積與△PAB的面積之差為m(m>0),則PB2﹣PD2的值為 .(用含m的式子表示)
【答案】(1)1.5;(2);(3).
【解析】
(1)【方法回顧】如圖1,利用“”證明,則,,然后利用得到.
(2)【問題解決】證明,推出,,再利用勾股定理構(gòu)建方程解決問題即可.
(3)【思維拓展】如圖3中,過點作交的延長線于,交的延長線于,設(shè),.設(shè),由,推出,可得,利用勾股定理即可解決問題.
解:(1)【方法回顧】如圖1中,
四邊形為正方形,
,,
,,
,
,
,,
,,
.
故答案為1.5.
(2)【問題解決】如圖2中,
四邊形是菱形,
,
,
,
,即,
,
,
,
,,
,
,
.
,
.
(3)【思維拓展】如圖3中,過點作交的延長線于,交的延長線于,設(shè),.
,
四邊形是矩形,
,,
四邊形是正方形,
,設(shè),
,
,
,
,
故答案為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2﹣x+3與x軸交于A,B兩點,與y軸交于點C,點M的坐標為(2, 1).以M為圓心,2為半徑作⊙M.則下列說法正確的是________(填序號).
①tan∠OAC=;
②直線AC是⊙M的切線;
③⊙M過拋物線的頂點;
④點C到⊙M的最遠距離為6;
⑤連接MC,MA,則△AOC與△AMC關(guān)于直線AC對稱.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程mx2-(m+2)x+2=0(m≠0)
(1)求證:方程一定有兩個實數(shù)根;
(2)若此方程的兩根為不相等的整數(shù),求整數(shù)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把下列各數(shù)分別填在相應(yīng)的集合里:
-2.4,3,,,0.333…,-(2.28),3.14,,1.010010001…(相鄰兩個1之間0的個數(shù)增加1),.
(1)正有理數(shù)集合{ ……}
(2)整數(shù)集合{ ……}
(3)負分數(shù)集合{ ……}
(4)無理數(shù)集合{ ……}
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=1,BC=.將矩形ABCD繞點A逆時針旋轉(zhuǎn)至矩形AB′C′D′,使得點B′恰好落在對角線BD上,連接DD′,則DD′的長度為( )
A. B. C. +1 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形中,點是邊上異于點的一點,的垂直平分線分別交、于,連.
(1)求證:;
(2)請求出:的度數(shù);
(3)試猜想線段之間的數(shù)量關(guān)系并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某檢修小組從A地出發(fā),在東西向的馬路上檢修線路,如果規(guī)定向東行駛為正,向西行駛為負,一天中七次行駛紀錄如下.(單位:)
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 第七次 |
(1)求收工時,檢修小組在地的何方向?距離地多遠?
(2)在第幾次紀錄時距地最遠?
(3)若汽車行駛每千米耗油0.4升,問從地出發(fā),檢修結(jié)束后再回到地共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線與y軸交于點.
(1)求拋物線的解析式;
(2)求拋物線與坐標軸的交點坐標;
(3)①當(dāng)x取什么值時, ? 當(dāng)x取什么值時,y的值隨x的增大而減?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】彩虹服裝店用元購進件襯衣,很快全部售完.服裝店老板以每件元的價格為標準,將超出的記為正數(shù),不足的記為負數(shù),記錄如下:,,,,,,,(單位:元).他賣完這件襯衣后是盈利還是虧損?盈利(或虧損)了多少錢?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com