【題目】如圖,在矩形紙片中,,點(diǎn)分別在上,把沿翻折,的落點(diǎn)是對(duì)角線上的點(diǎn),則四邊形的面積是____________

【答案】7.5

【解析】

直接根據(jù)矩形性質(zhì)及平行四邊形的判定證得四邊形AECF是平行四邊形,再根據(jù)勾股定理求出FC的長(zhǎng),最后利用平行四邊形的面積公式計(jì)算即可得出結(jié)論.

解:∵翻折,

∴∠FAHDAC,∠ECGBCA,

∵四邊形ABCD為矩形,

ADBCABCD,∠B=∠D90°,

∴∠DAC=∠BCA,

∴∠FAH=∠ECG,

AFCE,

又∵AECF

∴四邊形AECF是平行四邊形,

∵在矩形紙片ABCD中,∠B90°,AB4BC3,

,

∵翻折,

∴∠FHA=∠D90°,AHAD3,

同理可得,CG3

CHACAH532,

設(shè)DFFHx,則FC4x,

∵在RtFHC中,FC2FH2CH2,

∴(4x2x222,

解得x1.5,

FC4x2.5

∴四邊形AECF的面積為FC·AD2.5×37.5,

故答案為:7.5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】大家見(jiàn)過(guò)形如x+yz,這樣的三元一次方程,并且知道x3,y4z7就是適合該方程的一個(gè)正整數(shù)解,法國(guó)數(shù)學(xué)家費(fèi)爾馬早在17世紀(jì)還研究過(guò)形如x2+y2z2的方程.

1)請(qǐng)寫出方程x2+y2z2的兩組正整數(shù)解:   

2)研究直角三角形和勾股數(shù)時(shí),我國(guó)古代數(shù)學(xué)專著(九章算術(shù))給出了如下數(shù):am2n2),bmn,cm2+n2),(其中mnm,n是奇數(shù)),那么,以a,b,c為三邊的三角形為直角三角形,請(qǐng)你加以驗(yàn)證.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線試紙y=ax2+bx+cx軸交于點(diǎn)A,C,與y軸交于點(diǎn)B.已知點(diǎn)A坐標(biāo)為(8,0),點(diǎn)B(0,8),點(diǎn)D為(0,3),tanDCO=,直線AB和直線CD相交于點(diǎn)E.

求拋物線的解析式,并化成y=a(x-m)2+h的形式;

設(shè)拋物線的頂點(diǎn)為G,請(qǐng)?jiān)谥本AB上方的拋物線上求點(diǎn)P的坐標(biāo),使得SABP=SABG.

點(diǎn)M為直線AB上的一點(diǎn),過(guò)點(diǎn)Mx軸的平行線分別交直線AB,CD于點(diǎn)M,N,連結(jié)DM,DN,是否存在點(diǎn)M,使得DMN為等腰三角形?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在□ABCD中,對(duì)角線AC,BD相交于點(diǎn)OABAC,AB=3cmBC=5cm.點(diǎn)PA點(diǎn)出發(fā)沿AD方向勻速運(yùn)動(dòng),速度為1cm/s,連接PO并延長(zhǎng)交BC于點(diǎn)Q.設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<5)

1)當(dāng)t為何值時(shí),四邊形ABQP是平行四邊形?

2)當(dāng)t=3時(shí)四邊形OQCD的面積為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公園的門票每張20元,一次性使用.考慮到人們的不同需求,也為了吸引更多的游客,該公園除保留原來(lái)的售票方法外,還推出了一種購(gòu)買個(gè)人年票(個(gè)人年票從購(gòu)買日起,可供持票者使用一年)的售票方法.年票分AB,C三類,A類年票每張240元,持票進(jìn)入該園區(qū)時(shí),無(wú)需再購(gòu)買門票;B類年票每張120元,持票者進(jìn)入該園區(qū)時(shí),需再購(gòu)買門票,每次4元;C類年票每張80元,持票者進(jìn)入該園區(qū)時(shí),需再購(gòu)買門票,每次6.

1)如果只能選擇一種購(gòu)買年票的方式,并且計(jì)劃在一年中花費(fèi)160元在該公園的門票上,通過(guò)計(jì)算,找出可進(jìn)入該園區(qū)次數(shù)最多的方式.

2)一年中進(jìn)入該公園超過(guò)多少次時(shí),A類年票比較合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017湖北省鄂州市,第8題,3分)小東家與學(xué)校之間是一條筆直的公路,早飯后,小東步行前往學(xué)校,圖中發(fā)現(xiàn)忘帶畫(huà)板,停下給媽媽打電話,媽媽接到電話后,帶上畫(huà)板馬上趕往學(xué)校,同時(shí)小東沿原路返回,兩人相遇后,小東立即趕往學(xué)校,媽媽沿原路返回16min到家,再過(guò)5min小東到達(dá)學(xué)校,小東始終以100m/min的速度步行,小東和媽媽的距離y(單位:m)與小東打完電話后的步行時(shí)間t(單位:min)之間的函數(shù)關(guān)系如圖所示,下列四種說(shuō)法:

①打電話時(shí),小東和媽媽的距離為1400米;

②小東和媽媽相遇后,媽媽回家的速度為50m/min;

③小東打完電話后,經(jīng)過(guò)27min到達(dá)學(xué)校;

④小東家離學(xué)校的距離為2900m

其中正確的個(gè)數(shù)是( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】校園安全受到全社會(huì)的廣泛關(guān)注,某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題:

(1)接受問(wèn)卷調(diào)查的學(xué)生共有   人,扇形統(tǒng)計(jì)圖中基本了解部分所對(duì)應(yīng)扇形的圓心角為   度;

(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該中學(xué)共有學(xué)生900人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí)達(dá)到了解基本了解程度的總?cè)藬?shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的盒子里裝有只有顏色不同的黑、白兩種球共40個(gè),小穎做摸球?qū)嶒?yàn),她將盒子里面的球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回盒子中,不斷重復(fù)上述過(guò)程,下表是摸到白球的頻率折線統(tǒng)計(jì)圖:

(1)請(qǐng)估計(jì):當(dāng)很大時(shí),摸到白球的頻率將會(huì)接近 (精確到0.01);假如你摸一次,你摸到白球的概率

(2)試估算盒子里白、黑兩種顏色的球各有多少只?

(3)在(2)條件下如果要使摸到白球的概率為,需要往盒子里再放入多少個(gè)白球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,四邊形ABCD是邊長(zhǎng)為的正方形,矩形AEFG中AE=4,∠AFE=30°。將矩形AEFG繞點(diǎn)A順時(shí)針旋轉(zhuǎn)15°得到矩形AMNH(如圖2),此時(shí)BD與MN相交于點(diǎn)O.

(1)求∠DOM的度數(shù);

(2)圖2中,求D、N兩點(diǎn)間的距離;

(3)若將矩形AMNH繞點(diǎn)A再順時(shí)針旋轉(zhuǎn)15°得到矩形APQR,此時(shí)點(diǎn)B在矩形APQR的內(nèi)部、外部還是邊上?并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案