【題目】“校園安全”受到全社會的廣泛關(guān)注,某中學(xué)對部分學(xué)生就校園安全知識的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖,請根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學(xué)生共有 人,扇形統(tǒng)計(jì)圖中“基本了解”部分所對應(yīng)扇形的圓心角為 度;
(2)請補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該中學(xué)共有學(xué)生900人,請根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對校園安全知識達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù).
【答案】(1) 60,90;(2)見解析;(3) 300人
【解析】
(1)由了解很少的有30人,占50%,可求得接受問卷調(diào)查的學(xué)生數(shù),繼而求得扇形統(tǒng)計(jì)圖中“基本了解”部分所對應(yīng)扇形的圓心角;
(2)由(1)可求得了解的人數(shù),繼而補(bǔ)全條形統(tǒng)計(jì)圖;
(3)利用樣本估計(jì)總體的方法,即可求得答案.
解:(1)∵了解很少的有30人,占50%,
∴接受問卷調(diào)查的學(xué)生共有:30÷50%=60(人);
∴扇形統(tǒng)計(jì)圖中“基本了解”部分所對應(yīng)扇形的圓心角為:×360°=90°;
故答案為:60,90;
(2)60﹣15﹣30﹣10=5;
補(bǔ)全條形統(tǒng)計(jì)圖得:
(3)根據(jù)題意得:900×=300(人),
則估計(jì)該中學(xué)學(xué)生中對校園安全知識達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù)為300人.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c+2的圖象如圖所示,頂點(diǎn)為(﹣1,0),下列結(jié)論:①abc<0;②b2﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正確結(jié)論的個數(shù)是( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線的解析式是,并且與軸、軸分別交于A、B兩點(diǎn).一個半徑為1.5的⊙C,圓心C從點(diǎn)(0,1.5)開始以每秒0.5個單位的速度沿著軸向下運(yùn)動,當(dāng)⊙C與直線相切時,則該圓運(yùn)動的時間為( 。
A. 3秒或6秒 B. 6秒 C. 3秒 D. 6秒或16秒
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形紙片中,,點(diǎn)分別在上,把沿翻折,的落點(diǎn)是對角線上的點(diǎn)和,則四邊形的面積是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等邊△ABC的兩個頂點(diǎn)坐標(biāo)為A(-3,0),B(3,0),則點(diǎn)的坐標(biāo)為____,△ABC的面積為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個全等的直角三角形ABC和DEF重疊在一起,其中∠ACB=∠DFE=90°,∠A=∠FDE=60°,AC=1. 固定△ABC不動,將△DEF進(jìn)行如下操作:
(1) 如圖 (1),△DEF沿線段AB向右平移(即D點(diǎn)在線段AB內(nèi)移動),連結(jié)DC、CF、FB,四邊形CDBF的形狀在不斷的變化,但它的面積不變化,請求出其面積.
(2)如圖(2),當(dāng)D點(diǎn)移到AB的中點(diǎn)時,請你猜想四邊形CDBF的形狀,并說明理由.
(3)如圖(3),△DEF的F點(diǎn)固定在AB的中點(diǎn),然后繞F點(diǎn)按順時針方向旋轉(zhuǎn)△DEF,使EF交在AC邊上于M,F(xiàn)D交BC于N,若FM=x,FN=y,試求y關(guān)于x的函數(shù)關(guān)系式。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為A(-1,0),B(3,0),現(xiàn)同時將點(diǎn)A,B分別向上平移2個單位,再向右平移1個單位,分別得到點(diǎn)A,B的對應(yīng)點(diǎn)C,D,連接AC,BD,CD.
(1)求點(diǎn)C,D的坐標(biāo)及四邊形ABDC的面積S四邊形ABDC.(提示:平行四邊形的面積=底×高)
(2)在y軸上是否存在一點(diǎn)P,連接PA,PB,使S△PAB=S四邊形ABDC?若存在這樣一點(diǎn),求出點(diǎn)P的坐標(biāo);若不存在,試說明理由.
(3)點(diǎn)P是線段BD上的一個動點(diǎn),連接PC,PO,當(dāng)點(diǎn)P在BD上移動時(不與B,D重合)的值是否發(fā)生變化,若不變請求出該值,若會變請并請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們約定,在平面直角坐標(biāo)系中,經(jīng)過象限內(nèi)某點(diǎn)且平行于坐標(biāo)軸或平行于兩坐標(biāo)軸夾角平分線的直線,叫該點(diǎn)的“參照線”.例如,點(diǎn)的參照線有:,,,(如圖1).
如圖2,正方形在平面直角坐標(biāo)系中,點(diǎn)在第一象限,點(diǎn),分別在軸和軸上,點(diǎn)在正方形內(nèi)部.
(1)直接寫出點(diǎn)的所有參照線: ;
(2)若,點(diǎn)在線段的垂直平分線上,且點(diǎn)有一條參照線是,則點(diǎn)的坐標(biāo)是_______________;
(3)在(2)的條件下,點(diǎn)是邊上任意一點(diǎn)(點(diǎn)不與點(diǎn),重合),連接,將沿著折疊,點(diǎn)的對應(yīng)點(diǎn)記為.當(dāng)點(diǎn)在點(diǎn)的平行于坐標(biāo)軸的參照線上時,寫出相應(yīng)的折痕所在直線的解析式: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com