【題目】在⊙O中,弧AB所對的圓心角∠AOB=108°,點C為⊙O上的動點,以AOAC為邊構造AODC.當∠A_____°時,線段BD最長.

【答案】27°

【解析】

如圖,連接OC,延長OA交⊙OF,連接DF.由DOF≌△CAO,可得DF=OC,推出點D的運動軌跡是F為圓心OC為半徑的圓,推出當點DBF的延長線上時,BD的值最大,由此即可解決問題.

如圖,連接OC,延長OA交⊙OF,連接DF.

∵四邊形ACDO是平行四邊形,

∴∠DOF=∠A,DO=AC,

∵OF=AO,

∴△DOF≌△CAO,

∴DF=OC,

∴點D的運動軌跡是F為圓心OC為半徑的圓,

∴當點DBF的延長線上時,BD的值最大,

∵∠AOB=108°,

∴∠FOB=72°,

∵OF=OB,

∴∠OFB=54°,

∵FD=FO,

∴∠FOD=∠FDO=27°,

∴∠A=∠FOD=27°.

故答案為27°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】隨著低碳生活,綠色出行理念的普及,新能源汽車正逐漸成為人們喜愛的交通工具.某汽車銷售公司計劃購進一批新能源汽車嘗試進行銷售,據了解2A型汽車、3B型汽氣車的進價共計80萬元;3A型汽車、2B型汽車的進價共計95萬元。

(1)A、B兩種型號的汽車每輛進價分別為多少方元?

(2)若該公司計劃正好用200萬元購進以上兩種型號的新能源汽車(兩種型號的汽車均購買),請你幫助該公司設計購買方案;

(3)若該汽車銷售公司銷售1A型汽車可獲利8000,銷售1B型汽車可獲利5000,(2)中的購買方案中,假如這些新能源汽車全部售出,哪種方案獲利最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】8分如圖,AC是ABCD的一條對角線,過AC中點O的直線分別交AD,BC于點E,F(xiàn)

1求證:AOE≌△COF;

2當EF與AC滿足什么條件時,四邊形AFCE是菱形?并說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,過矩形ABCD的對角線BD上一點K分別作矩形兩邊的平行線MNPQ,那么圖中矩形AMKP的面積S1與矩形QCNK的面積S2的大小關系是S1_____S2;(填“>”或“<”或“=”)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,RtABC的斜邊AB在y軸上,邊AC與x軸交于點D,AE平分BAC交邊BC于點E,經過點A、D、E的圓的圓心F恰好在y軸上,F與y軸相交于另一點G.

(1)求證:BC是F的切線;

(2)若點A、D的坐標分別為A(0,﹣1),D(2,0),求F的半徑;

(3)試探究線段AG、AD、CD三者之間滿足的等量關系,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,三個頂點的坐標分別為、.

(1)關于y軸成軸對稱,則三個頂點坐標分別為_____________________,____________;

(2)Px軸上一點,則的最小值為____________;

(3)計算的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C為線段AB上一點,分別以AB、AC、CB為底作頂角為120°的等腰三角形,頂角頂點分別為D、E、F(點EFAB的同側,點D在另一側)

(1)如圖1,若點CAB的中點,則∠AED   ;

(2)如圖2,若點C不是AB的中點

①求證:DEF為等邊三角形;

②連接CD,若∠ADC=90°,AB=3,請直接寫出EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,、的角平分線相交于點,①若,則__________,②若,則___________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為1,AC,BD是對角線。將DCB繞著點D順時針旋轉45°得到DGH,HGAB于點E,連接DEAC于點F,連接FG。則下列結論:①四邊形AEGF是菱形;②△AED≌△GED;③∠DFG=112.5°;④BC+FG=1.5.其中正確的結論是( )

A. ①②③④ B. ①②③ C. ①② D.

查看答案和解析>>

同步練習冊答案