【題目】如圖,正方形ABCD的邊長為1,ACBD是對角線。將DCB繞著點D順時針旋轉45°得到DGHHGAB于點E,連接DEAC于點F,連接FG。則下列結論:①四邊形AEGF是菱形;②△AED≌△GED;③∠DFG=112.5°;④BC+FG=1.5.其中正確的結論是( )

A. ①②③④ B. ①②③ C. ①② D.

【答案】B

【解析】

首先證明△ADE≌△GDE,再求出∠AEF、∠AFE、∠GEF、∠GFE的度數(shù),推出AE=EG=FG=AF,由此可以一一判斷.

解:∵四邊形ABCD是正方形,

AD=DC=BC=AB,∠DAB=ADC=DCB=ABC=90°,∠ADB=BDC=CAD=CAB=45°,

∵△DGH是由△DCB旋轉得到,

DG=DC=AD,∠DGE=DCB=DAE=90°,

RtAEDRtGED中,

∴△AED≌△GED,故②正確,

∴∠ADE=EDG=22.5°,AE=GE,

∴∠AED=AFE=67.5°,

AE=AF,同理GE=GF

AE=GE=GF=AF,

∴四邊形AEGF是菱形,故①正確,

∵∠DFG=GFC+DFC=BAC+DAC+ADF=112.5°,故③正確.

AE=FG=EG=BGBE=AE,

BE>AE,

AE<,

CB+FG<1.5,故④錯誤.

故選:B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程(a+1)x2+2bx+(a+1)=0有兩個相等的實數(shù)根,下列判斷正確的是( 。

A. 1一定不是關于x的方程x2+bx+a=0的根

B. 0一定不是關于x的方程x2+bx+a=0的根

C. 1和﹣1都是關于x的方程x2+bx+a=0的根

D. 1和﹣1不都是關于x的方程x2+bx+a=0的根

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于一個圖形,通過兩種不同的方法計算它的面積,可以得到一個數(shù)學等式,例如圖1可以得到(a+b)2=a2+2ab+b2,請解答下列問題:

(1)寫出圖2中所表示的數(shù)學等式   。

(2)根據(jù)整式乘法的運算法則,通過計算驗證上述等式。

(3)利用(1)中得到的結論,解決下面的問題:

a+b+c=10,ab+ac+bc=35,a2+b2+c2= .

(4)小明同學用圖3x張邊長為a的正方形,y張邊長為b的正方形z張邊長分別為a、b的長方形紙片拼出一個面積為(5a+7b)(9a+4b)長方形,x+y+z=   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)yax+b和反比例函數(shù)y在同一直角坐標系中的大致圖象是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在平面直角坐標系中,函數(shù) y kx y 的圖象交于 A、B 兩點, A y 軸的垂線,交函數(shù)的圖象于點 C,連接 BC,則ABC 的面積為(

A. 2 B. 4 C. 6 D. 8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AC=BC,D是BC上的一點,且滿足∠BAD= ∠C,以AD為直徑的⊙O與AB,AC分別相交于點E,F(xiàn).

(1)求證:直線BC是⊙O的切線;
(2)連接EF,若tan∠AEF= ,AD=4,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AC是正方形ABCD的對角線,點OAC的中點,點QAB上一點,連接CQ,DPCQ于點E,交BC于點P,連接OP,OQ;

求證:(1)BCQ≌△CDP;(2)OP=OQ.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知是邊長為的等邊三角形,動點的速度從點出發(fā),沿線段向點運動.

(1)如圖甲,設點的運動時間為,那么為何值時,是直角三角形?

(2)若另一動點從點出發(fā),沿射線方向運動,連接于點,如果動點都以的速度同時出發(fā).

①如圖乙,設運動時間為,那么為何值時,是等腰三角形?

②如圖丙,連接,請你猜想:在點的運動過程中,的面積有什么關系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】九(3)班為了組隊參加學校舉行的五水共治知識競賽,在班里選取了若干名學生,分成人數(shù)相同的甲、乙兩組,進行了四次五水共治模擬競賽,成績優(yōu)秀的人數(shù)和優(yōu)秀率分別繪制成如圖統(tǒng)計圖.

根據(jù)統(tǒng)計圖,解答下列問題:

(1)第三次成績的優(yōu)秀率是多少?并將條形統(tǒng)計圖補充完整;

(2)已求得甲組成績優(yōu)秀人數(shù)的平均數(shù),方差,請通過計算說明那一組成績優(yōu)秀的人數(shù)較穩(wěn)定?

查看答案和解析>>

同步練習冊答案