【題目】如圖,AC是正方形ABCD的對角線,點(diǎn)OAC的中點(diǎn),點(diǎn)QAB上一點(diǎn),連接CQDPCQ于點(diǎn)E,交BC于點(diǎn)P,連接OPOQ;

求證:(1)BCQ≌△CDP(2)OP=OQ.

【答案】(1)見解析;(2)見解析.

【解析】

(1)根據(jù)正方形的性質(zhì)和DPCQ于點(diǎn)E可以得到證明△BCQ≌△CDP的全等條件;

(2)根據(jù)(1)得到BQ=PC,然后連接OB,根據(jù)正方形的性質(zhì)可以得到證明△BOQ≌△COP的全等條件,然后利用全等三角形的性質(zhì)就可以解決題目的問題.

證明:(1)∵四邊形ABCD是正方形,

∴∠B=∠PCD=90°,BC=CD,

∴∠2+∠3=90°,

∵DP⊥CQ,

∴∠2+∠1=90°

∴∠1=∠3,

△BCQ△CDP中,

∴△BCQ≌△CDP;

(2)連接OB

(1)△BCQ≌△CDP可知:BQ=PC,

四邊形ABCD是正方形,

∴∠ABC=90°AB=BC,

∵點(diǎn)OAC中點(diǎn),

∴BO=AC=CO,∠4=ABC=45°=PCO,

△BOQ△COP中,

∴△BOQ≌△COP,

∴OQ=OP.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c的對稱軸是x=﹣1.且過點(diǎn)(0.5,0),有下列結(jié)論:
①abc>0; ②a﹣2b+4c=0; ③25a﹣10b+4c=0; ④3b+2c>0;⑤a﹣b≥m(am﹣b).
其中所有正確的結(jié)論是( )

A.①②③
B.①③④
C.①②③⑤
D.①③⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】向右平移個(gè)單位長度,再向下平移個(gè)單位長度,得到

1)在平面直角坐標(biāo)系中,畫出

2)寫出平移后點(diǎn)的坐標(biāo):_____,____)._____,_____).__________);

3)求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為1,AC,BD是對角線。將DCB繞著點(diǎn)D順時(shí)針旋轉(zhuǎn)45°得到DGH,HGAB于點(diǎn)E,連接DEAC于點(diǎn)F,連接FG。則下列結(jié)論:①四邊形AEGF是菱形;②△AED≌△GED;③∠DFG=112.5°;④BC+FG=1.5.其中正確的結(jié)論是( )

A. ①②③④ B. ①②③ C. ①② D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A(3,2)和點(diǎn)M(m,n)都在反比例函數(shù)y=(x>0)的圖像上,

(1)k的值,并求當(dāng)m=4時(shí),直線AM的解析式;

(2)過點(diǎn)MMPx,垂足為P,過點(diǎn)AABy,垂足為B,直線AMx軸于點(diǎn)Q,試說明四邊形ABPQ是平行四邊形;

(3)(2)的條件下,四邊形ABPQ能否為菱形?若能,請求出m的值;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,點(diǎn) C 是線段 AB 上一點(diǎn), 5BC=2AB,D AB 的中點(diǎn),E CB 的中點(diǎn),(1) DE=6,求 AB 的長;(2)求 AD:AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題

情景:

試根據(jù)圖中的信息,解答下列問題:

(1)購買6根跳繩需___________元,購買12根跳繩需_____________元

(2)小紅比小明多買2根,付款時(shí)小紅反而比小明少5元,你認(rèn)為有這種可能嗎?若有,請求出小紅購買跳繩的根數(shù);若沒有,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,C=90°,B=30°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點(diǎn)MN,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點(diǎn)P,連結(jié)AP并延長交BC于點(diǎn)D,則下列說法中正確的個(gè)數(shù)是

ADBAC的平分線;②∠ADC=60°;點(diǎn)DAB的中垂線上;SDACSABC=13

A1 B2 C3 D4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具商店銷售功能相同的A、B兩種品牌的計(jì)算器購買2個(gè)A品牌和3個(gè)B品牌的計(jì)算器共需156;購買3個(gè)A品牌和1個(gè)B品牌的計(jì)算器共需122

(1)求這兩種品牌計(jì)算器的單價(jià);

(2)學(xué)校開學(xué)前夕,該商店對這兩種計(jì)算器開展了促銷活動,具體辦法如下A品牌計(jì)算器按原價(jià)的八折銷售,B品牌計(jì)算器超出5個(gè)的部分按原價(jià)的七折銷售,設(shè)購買x個(gè)A品牌的計(jì)算器需要y1,購買xx>5)個(gè)B品牌的計(jì)算器需要y2,分別求出y1y2關(guān)于x的函數(shù)關(guān)系式;

(3)當(dāng)需要購買50個(gè)計(jì)算器時(shí),買哪種品牌的計(jì)算器更合算?

查看答案和解析>>

同步練習(xí)冊答案