【題目】轉轉盤和摸球是等可能概率下的經典模型.
(1)在一個不透明的口袋中,放入除顏色外其余都相同的4個小球,其中1個白球,3個黑球攪勻后,隨機同時摸出2個球,求摸出兩個都是黑球的概率(要求釆用樹狀圖或列表法求解);
(2)如圖,轉盤的白色扇形和黑色扇形的圓心角分別為120°和240°.讓轉盤自由轉動2次,求指針2次都落在黑色區(qū)域的概率(要求采用樹狀圖或列表法求解).
【答案】(1);(2).
【解析】
(1)根據題意先畫出樹狀圖,得出所有等情況數和摸出兩個都是黑球的情況數,然后根據概率公式即可得出答案;
(2)記白色區(qū)域為A、黑色區(qū)域為B,將B區(qū)域平分成兩部分,然后根據題意畫樹狀圖,由樹狀圖求得所有等可能的結果與兩次指針都落在黑色區(qū)域的情況,再利用概率公式即可求得答案.
(1)根據題意畫圖如下:
共有12種等可能的結果,摸出兩個都是黑球的情況數有6種,
所以摸出兩個都是黑球的概率是;
(2)記白色區(qū)域為A、黑色區(qū)域為B,將B區(qū)域平分成兩部分,
畫樹狀圖得:
∵共有9種等可能的結果,兩次指針都落在黑色區(qū)域的有4種情況,
∴指針2次都落在黑色區(qū)域的概率為.
科目:初中數學 來源: 題型:
【題目】如圖5,在A島周圍25海里水域有暗礁,一輪船由西向東航行到O處時,發(fā)現A島在北偏東60°方向,輪船繼續(xù)前行20海里到達B處發(fā)現A島在北偏東45°方向,該船若不改變航向繼續(xù)前進,有無觸礁的危險? (參考數據:)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】現有兩個紙箱,每個紙箱內各裝有4個材質、大小都相同的乒乓球,其中一個紙箱內4個小球上分別寫有1、2、3、4這4個數,另一個紙箱內4個小球上分別寫有5、6、7、8這4個數,甲、乙兩人商定了一個游戲,規(guī)則是:從這兩個紙箱中各隨機摸出一個小球,然后把兩個小球上的數字相乘,若得到的積是2的倍數,則甲得1分,若得到積是3的倍數,則乙得2分.完成一次游戲后,將球分別放回各自的紙箱,搖勻后進行下一次游戲,最后得分高者勝出.。
(1)請你通過列表(或樹狀圖)分別計算乘積是2的倍數和3的倍數的概率;
(2)你認為這個游戲公平嗎?為什么?若你認為不公平,請你修改得分規(guī)則,使游戲對雙方公平.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】近年來,我國煤礦安全事故頻頻發(fā)生,其中危害最大的是瓦斯,其主要成分是CO.在一次礦難事件的調查中發(fā)現:從零時起,井內空氣中CO的濃度達到4 mg/L,此后濃度呈直線型增加,在第7小時達到最高值46 mg/L,發(fā)生爆炸;爆炸后,空氣中的CO濃度成反比例下降,如圖,根據題中相關信息回答下列問題:
(1)求爆炸前后空氣中CO濃度y與時間x的函數關系式,并寫出相應的自變量取值范圍;
(2)當空氣中的CO濃度達到34 mg/L時,井下3 km的礦工接到自動報警信號,這時他們至少要以多少km/h的速度撤離才能在爆炸前逃生?
(3)礦工只有在空氣中的CO濃度降到4 mg/L及以下時,才能回到礦井開展生產自救,求礦工至少在爆炸后多少小時才能下井?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在我國古代數學著作《九章算術》中記載了這樣一個問題:“今有圓材,埋在墻壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?”問題題意為:如圖,有一圓柱形木材埋在墻壁中,不知其直徑大。娩徣ヤ忂@木材,鋸口深1寸(即CD=1寸),鋸道長1尺(即AB=1尺),問這圓形木材直徑是多少?(注:1尺=10寸)由此,可求出這圓形木材直徑為______寸.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c(a≠0)的圖象如圖,給出下列四個結論:
①b2﹣4ac>0;
②4a﹣2b+c<0;
③3b+2c<0;
④m(am+b)<a﹣b(m≠﹣1),
其中正確結論的個數是( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“圓材埋壁”是我國著名的數學著作《九章算術》中的一個問題,“今有圓材,埋于壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?” 用現代的數學語言表達是:“如圖,CD是⊙O的直徑,弦AB⊥CD,垂足為E,CE = 1寸,AB = 1尺,求直徑的長”. 依題意,CD長為( )
A. 寸 B. 13寸 C. 25寸 D. 26寸
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某學校有一塊長方形活動場地,長為2x米,寬比長少5米.實施“陽光體育”行動以后,學校為了擴大學生的活動場地,讓學生能更好地進行體育活動,將操場的長和寬都增加了4米.
(1)求擴大后學生的活動場地的面積.(用含x的代數式表示)
(2)若x=20,求活動場地擴大后增加的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c(a≠0)的圖象如圖所示.有下列結論:①b2-4ac<0;②ab>0;③a-b+c=0;④4a+b=0;⑤當y=2時,x只能等于0.其中正確的是( )
A. ①④ B. ③④ C. ②⑤ D. ③⑤
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com