【題目】如圖,在直角 中,∠C=90°,DC = 2,∠CAB的平分線AD交BC于點D,DE垂直平分AB.求∠B的度數(shù)和DB的長.
【答案】∠B=30°,DB=4
【解析】
試題根據(jù)DE垂直平分AB,可得∠DAE=∠B,再利用角平分線的性質和三角形內角和定理,即可求得∠B的度數(shù);根據(jù)∠CAB的平分線AD交BC于點D,DE⊥AB可知DE=CD=2,在Rt△BDE中根據(jù)直角三角形的性質即可得出結論.
試題解析:∵在直角△ABC中,∠C=90°,∠CAB的平分線AD交BC于D,
∴∠DAE=∠CAB=(90°-∠B),
∵DE垂直平分AB,
∴AD=BD,
∴∠DAE=∠B,
∴∠DAE=∠CAB=(90°-∠B)=∠B,
∴3∠B=90°,
∴∠B=30°;
∵在△ABC中,∠C=90°,∠CAB的平分線AD交BC于點D,DE⊥AB,
∴DE=CD=2,
∵∠B=30°,
∴BD=2DE=4.
科目:初中數(shù)學 來源: 題型:
【題目】中華文明,源遠流長;中華詩詞,寓意深廣.為了傳承優(yōu)秀傳統(tǒng)文化,我市某校團委組織了一次全校2000名學生參加的“中國詩詞大會”海選比賽,賽后發(fā)現(xiàn)所有參賽學生的成績均不低于50分,為了更好地了解本次海選比賽的成績分布情況,隨機抽取了其中200名學生的海選比賽成績(成績x取整數(shù),總分100分)作為樣本進行整理,得到下列統(tǒng)計圖表:
請根據(jù)所給信息,解答下列問題:
(1)請把圖1中的條形統(tǒng)計圖補充完整;
(2)在圖2的扇形統(tǒng)計圖中,記表示B組人數(shù)所占的百分比為a%,則a的值為 ,表示C組扇形的圓心角θ的度數(shù)為 度;
(3)規(guī)定海選成績在90分以上(包括90分)記為“優(yōu)等”,請估計該校參加這次海選比賽的2000名學生中成績“優(yōu)等”的有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(慶陽中考)現(xiàn)在的青少年由于沉迷電視、手機、網(wǎng)絡游戲等,視力日漸減退,某市為了了解學生的視力變化情況,從全市九年級隨機抽取了1 500名學生,統(tǒng)計了每個人連續(xù)三年視力檢查的結果,根據(jù)視力在4.9以下的人數(shù)變化制成折線統(tǒng)計圖,并對視力下降的主要因素進行調查,制成扇形統(tǒng)計圖.
解答下列問題:
(1)圖中D所在扇形的圓心角度數(shù)為______;
(2)若2016年全市共有30 000名九年級學生,請你估計視力在4.9以下的學生約有多少名?
(3)根據(jù)扇形統(tǒng)計圖信息,你覺得中學生應該如何保護視力?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線l1∥l2,直線l3和直線l1、l2交于點C和D,在直線CD上有一點P.
(1)如果P點在C、D之間運動時,問∠PAC,∠APB,∠PBD有怎樣的數(shù)量關系?請說明理由.
(2)若點P在C、D兩點的外側運動時(P點與點C、D不重合),試探索∠PAC,∠APB,∠PBD之間的關系又是如何?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC中,AB=AC,AB的垂直平分線交AC于D,△ABC和△DBC的周長分別是70cm和48cm,則△ABC的腰和底邊長分別為( )
A.24cm和22cm B.26cm和18cm
C.22cm和26cm D.23cm和24cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC在平面直角坐標系中的位置如圖,其中每個小正方形的邊長為1個單位長度.
(1)按要求作圖:
①畫出△ABC關于原點O的中心對稱圖形△A1B1C1;
②畫出將△ABC繞點C順時針旋轉90°得到△A2B2C2.
(2)回答下列問題:
①△A1B1C1中頂點A1坐標為 ;
②若P(a,b)為△ABC邊上一點,則按照(1)中①作圖,點P對應的點P1的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知整數(shù)滿足下列條件:=0,=﹣|+1|,=﹣|+2|,=﹣|+3|,……以此類推,則的值為( 。
A. ﹣1007 B. ﹣1008 C. ﹣1009 D. ﹣2018
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在y軸正半軸上依次截取OA1=A1A2=A2A3=…=An﹣1An(n為正整數(shù)),過A1 , A2 , A3 , …,An分別作x軸的平行線,與反比例函數(shù)y= (x>0)交于點B1 , B2 , B3 , …,Bn , 如圖所示的Rt△B1C1B2 , Rt△B2C2B3 , Rt△B3C3B4 , …,Rt△Bn﹣1Cn﹣1Bn面積分別記為S1 , S2 , S3 , …,Sn﹣1 , 則S1+S2+S3+…+Sn﹣1=( )
A.1
B.2
C.1﹣
D.2﹣
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com