【題目】如圖,拋物線y=﹣x2+2x+3與y軸交于點C,頂點為D.

(1)求頂點D的坐標(biāo).
(2)求△OCD的面積.

【答案】
(1)解:y=﹣x2+2x+3

=﹣(x2﹣2x+1﹣1)+3

=﹣(x﹣1)2+4,

即頂點D的坐標(biāo)為(1,4)


(2)解:把x=0代入y=﹣x2+2x+3得:y=3,

即OC=3,

所以△OCD的面積為 3×1=


【解析】(1)把解析式化成頂點式,即可得出答案;(2)求出OC的長,再根據(jù)三角形的面積公式求出即可.
【考點精析】關(guān)于本題考查的二次函數(shù)的性質(zhì),需要了解增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩枚正四面體骰子的各面上分別標(biāo)有數(shù)字1,2,3,4,現(xiàn)在同時投擲這兩枚骰子,并分別記錄著地的面所得的點數(shù)為a、b.
(1)假設(shè)兩枚正四面體都是質(zhì)地均勻,各面著地的可能性相同,請你在下面表格內(nèi)列舉出所有情形(例如(1,2),表示a=1,b=2),并求出兩次著地的面點數(shù)相同的概率.

b
a

1

2

3

4

1

(1,2)

2

3

4


(2)為了驗證試驗用的正四面體質(zhì)地是否均勻,小明和他的同學(xué)取一枚正四面體進行投擲試驗.試驗中標(biāo)號為1的面著地的數(shù)據(jù)如下:

試驗總次數(shù)

50

100

150

200

250

500

“標(biāo)號1”的面著地的次數(shù)

15

26

34

48

63

125

“標(biāo)號1”的面著地的頻率

0.3

0.26

0.23

0.24

請完成表格(數(shù)字精確到0.01),并根據(jù)表格中的數(shù)據(jù)估計“標(biāo)號1的面著地”的概率是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0),B(5,0)兩點,直線y=﹣ x+3與y軸交于點C,與x軸交于點D.點P是x軸上方的拋物線上一動點,過點P作PF⊥x軸于點F,交直線CD于點E.設(shè)點P的橫坐標(biāo)為m.

(1)求拋物線的解析式;
(2)若PE=5EF,求m的值;
(3)若點E′是點E關(guān)于直線PC的對稱點,是否存在點P,使點E′落在y軸上?若存在,請直接寫出相應(yīng)的點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某氣球內(nèi)充滿了一定質(zhì)量的氣體,當(dāng)溫度不變時,氣球內(nèi)氣體的氣壓P(kPa)是氣體體積V(m3)的反比例函數(shù),其圖像如圖所示,當(dāng)氣球內(nèi)氣壓大于120kPa時,氣球?qū)⒈ǎ瑸榱税踩鹨,氣球?nèi)的體積應(yīng)(

A. 小于1.25m3 B. 大于1.25m3 C. 不小于0.8m3 D. 大于0.8m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,邊長為a的正方形發(fā)生形變后成為邊長為a的菱形,如果這個菱形的一組對邊之間的距離為h,我們把的值叫做這個菱形的形變度;例如,當(dāng)形變后的菱形是如圖2形狀(被對角線BD分成2個等邊三角形),則這個菱形的形變度2:;如圖3,正方形由16個邊長為1的小正方形組成,形變后成為菱形,AEF(A、E、F是格點)同時形變?yōu)?/span>A'E'F',若這個菱形的形變度”k=,則_______;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角 中,∠C=90°,DC = 2,∠CAB的平分線AD交BC于點D,DE垂直平分AB.求∠B的度數(shù)和DB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCBOD都是等腰直角三角形,∠ACB=BDO=90°,且點A在反比例函數(shù)(k>0)的圖像上,若OB2-AB2=10,則k的值為 ( )

A. 10 B. 5 C. 20 D. 2.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x,y的方程組 ,其中-3≤a≤1,給出下列結(jié)論:①當(dāng)a=1時,方程組的解也是方程x+y=4-a的解;

②當(dāng)a=-2時,x、y的值互為相反數(shù);

③若x<1,則1≤y≤4;

是方程組的解,其中正確的結(jié)論有

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛貨車為一家摩托車配件批發(fā)部送貨,先向南走了8km到達“華能”修理部,又向北走了3.5km到達“捷速”修理部,繼續(xù)向北走了7.5km到達“志遠”修理部,最后又回到了批發(fā)部.

(1)以批發(fā)部為原點,以向南的方向為正方向,用1個單位長度表示1km,你能在數(shù)軸上表示出“華能”、“捷速”、“志遠”三家修理部的位置嗎?

(2)“志遠”修理部到“捷速”修理部多遠?

(3)貨車若行駛1千米需耗油0.5升,本次這輛貨車共耗油多少升?

查看答案和解析>>

同步練習(xí)冊答案