【題目】如圖,在△ABC中,AB=AC,以AB為直徑作⊙O,⊙O交BC于點D,交CA的延長線于點E.過點D作DF⊥AC,垂足為F

(1)求證:DF為⊙O的切線;

(2)若AB=4,C=30°,求劣弧的長

【答案】(1)證明見解析(2)

【解析】(1)連接AD、OD,根據(jù)直徑所對的圓周角為直角,可得∠ADB=90°,然后根據(jù)等腰三角形的性質(zhì)求出BD=CD,再根據(jù)中位線的性質(zhì)求出OD⊥DF,進而根據(jù)切線的判定證明即可;

(2)連接OE,根據(jù)三角形的外角求出∠BAE的度數(shù),然后根據(jù)圓周角定理求出∠BOE的度數(shù),根據(jù)弧長公式求解即可.

(1)連接AD、OD.∵AB是直徑,∴∠ADB=90°.

∵AB=AC,∴BD=CD,

∵OA=OB,∴OD是ABC的中位線,∴OD∥AC,

∵DF⊥AC,∴OD⊥DF

∠ODF=90°.∴DF為O的切線

(2)連接OE.∵AB=AC,∴∠B=∠C=30°,∴∠BAE=60°,

∵∠BOE=2∠BAE,∴∠BOE=120°,

·4π=π.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,拋物線y=﹣x2+x+x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,對稱軸與x軸交于點D.

(1)求直線BC的解析式;

(2)如圖2,點P為直線BC上方拋物線上一點,連接PB、PC.當PBC的面積最大時,在線段BC上找一點E(不與B、C重合),使PE+BE的值最小,求點P的坐標和PE+BE的最小值;

(3)如圖3,點G是線段CB的中點,將拋物線y=﹣x2+x+沿x軸正方向平移得到新拋物線y′,y′經(jīng)過點D,y′的頂點為F.在拋物線y′的對稱軸上,是否存在一點Q,使得FGQ為直角三角形?若存在,直接寫出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰中,,,邊上的中點,點、分別在、邊上運動,且始終保持.連接、

1)求證:;

2)試證明是等腰直角三角形;

3)若,,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校組織一項公益知識競賽,比賽規(guī)定:每個班級由2名男生、2名女生及1名班主任老師組成代表隊.但參賽時,每班只能有3名隊員上場參賽,班主任老師必須參加,另外2名隊員分別在2名男生和2名女生中各隨機抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任組成了代表隊,求恰好抽到由男生甲、女生丙和這位班主任一起上場參賽的概率.(請用畫樹狀圖列表列舉等方法給出分析過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】作圖題:已知MAB=60°,以AB的長為菱形ABCD的邊長,點D在AM上,

(1)作出這個菱形.(保留作圖痕跡,不寫作法,不用證明)

(2)若AB=2,則對角線AC的長為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為豐富學生的學習生活,某班組織學生參觀某愛國主義教育基地,所聯(lián)系的旅行社收費標準如下:

活動結(jié)束后,該班共支付給該旅行社活動費用5600元,該班共有多少人參加這次活動?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在4×8的網(wǎng)格紙中,每個小正方形的邊長都為1,動點P、Q分別從點D、A同時出發(fā)向右移動,點P的運動速度為每秒1個單位,點Q的運動速度為每秒0.5個單位,當點P運動到點C時,兩個點都停止運動,設(shè)運動時間為t(0<t<8).

(1)請在4×8的網(wǎng)格紙圖2中畫出t6秒時的線段PQ.并求其長度;

(2)當t為多少時,△PQB是以PQ為腰的等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一種樹苗,栽種時高度約為80厘米,為研究它的生長情況,測得數(shù)據(jù)如下表:

(1)此變化過程中_____是自變量,_____是因變量;

(2)樹苗高度h與栽種的年數(shù)n的關(guān)系式為_____

(3)栽種后_____后,樹苗能長到280厘米.

栽種以后的年數(shù)n/

高度h/厘米

1

105

2

130

3

155

4

180

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級開展征文活動,征文主題只能從愛國”“敬業(yè)”“誠信”“友善四個主題選擇一個,九年級每名學生按要求都上交了一份征文,學校為了解選擇各種征文主題的學生人數(shù),隨機抽取了部分征文進行了調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.

(1)求共抽取了多少名學生的征文;

(2)將上面的條形統(tǒng)計圖補充完整;

(3)在扇形統(tǒng)計圖中,選擇愛國主題所對應(yīng)的圓心角是多少;

(4)如果該校九年級共有1200名學生,請估計選擇以友善為主題的九年級學生有多少名.

查看答案和解析>>

同步練習冊答案