【題目】某租賃公司有型兩種客車,它們的載客量和租金標(biāo)準(zhǔn)如下:

客車類型

載客量(人/輛)

租金(元/輛)

45

400

30

280

如果某學(xué)校計(jì)劃組織195名師生到培訓(xùn)基地參加社會實(shí)踐活動,那么租車的總費(fèi)用最低為____________________元.

【答案】1760

【解析】

設(shè)租A型客車x輛,B型客車y輛,根據(jù)總?cè)藬?shù)列出二元一次方程,求出整數(shù)解,得到租車方案,再根據(jù)每種租車方案的價格可得最低費(fèi)用.

解:設(shè)租A型客車x輛,B型客車y輛,

45x+30y=195,

3x+2y=13

當(dāng)y=2時,x=3,

當(dāng)y=5時,x=1

∴租車方案有兩種,

若租A型客車3輛,B型客車2輛,

則總費(fèi)用為:3×400+2×280=1760元,

若租A型客車1輛,B型客車5輛,

則總費(fèi)用為:1×400+5×280=1800元,

17601800,

∴租車總費(fèi)用最低為1760元,

故答案為:1760.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場打算在年前用30000元購進(jìn)一批彩燈進(jìn)行銷售,由于進(jìn)貨廠家促銷,實(shí)際可以以8折的價格購進(jìn)這批彩燈,結(jié)果可以比計(jì)劃多購進(jìn)了100盞彩燈.

1)該商場購進(jìn)這種彩燈的實(shí)際進(jìn)價為多少元?

2)該商場打算在實(shí)際進(jìn)價的基礎(chǔ)上,每盞燈加價50%的銷售,但可能會面臨滯銷,因此將有20%的彩燈需要降價,以5折出售,該商場要想獲利不低于15000元,應(yīng)至少在購進(jìn)這種彩燈多少盞?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,做BD的垂直平分線E,F,分別與AD、BC交于點(diǎn)EF,連接BE,DF,若EF=AE+FC,則邊BC的長為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們規(guī)定,以二次函數(shù)的二次項(xiàng)系數(shù)2倍為一次項(xiàng)系數(shù),一次項(xiàng)系數(shù)為常數(shù)項(xiàng)構(gòu)造的一次函數(shù)叫做二次函數(shù)子函數(shù),反過來,二次函數(shù)叫做一次函數(shù)母函數(shù)

1)若一次函數(shù)是二次函數(shù)子函數(shù),且二次函數(shù)經(jīng)過點(diǎn),求此二次函數(shù)的解析式.

2)如圖,已知二次函數(shù)子函數(shù)圖象直線軸、軸交于、兩點(diǎn),點(diǎn)是直線上方的拋物線上任意一點(diǎn),求的面積的最大值.

3)已知二次函數(shù)與它的子函數(shù)的函數(shù)圖象有兩個交點(diǎn),,且,求的值;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市購進(jìn)一批成本為每件元的商品,經(jīng)調(diào)查發(fā)現(xiàn),該商品每天的銷售量()與銷售單價()之間滿足一次函數(shù)關(guān)系,其圖象如圖所示.

1)求該商品每天的銷售量與銷售單價之間的函數(shù)關(guān)系式;

2)若超市按單價不低于成本價,且不高于元銷售,則銷售單價定為多少,才能使銷售該商品每天獲得的利潤()最大?

3)若超市要使銷售該商品每天獲得的利潤為元,則每天的銷售量應(yīng)為多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】自從開展創(chuàng)建全國文明城區(qū)工作以來,門頭溝區(qū)便掀起了門頭溝熱心人志愿服務(wù)的熱潮,區(qū)教委也號召各校學(xué)生積極參與到志愿服務(wù)當(dāng)中.為了解甲、乙兩所學(xué)校學(xué)生一周志愿服務(wù)情況,從這兩所學(xué)校中各隨機(jī)抽取40名學(xué)生,分別對他們一周的志愿服務(wù)時長(單位:分鐘)數(shù)據(jù)進(jìn)行收集、整理、描述和分析.下面給出了部分信息:

a.甲校40名學(xué)生一周的志愿服務(wù)時長的扇形統(tǒng)計(jì)圖如圖(數(shù)據(jù)分成6組:)

A    B

C    D

E    F

b.甲校40名學(xué)生一周志愿服務(wù)時長在這一組的是:

60 60 62 63 65 68 70 72 73 75 75 76 80 80

c.甲、乙兩校各抽取的40名學(xué)生一周志愿服務(wù)時長的平均數(shù)、中位數(shù)、眾數(shù)如下:

學(xué)校

平均數(shù)

中位數(shù)

眾數(shù)

甲校

75

90

乙校

75

76

85

根據(jù)以上信息,回答下列問題:

1_____________;

2)根據(jù)上面的統(tǒng)計(jì)結(jié)果,你認(rèn)為_________所學(xué)校學(xué)生志愿服務(wù)工作做得好(“),理由______________________________________________________________

3)甲校要求學(xué)生一周志愿服務(wù)的時長不少于60分鐘,如果甲校共有學(xué)生800人,請估計(jì)甲校學(xué)生中一周志愿服務(wù)時長符合要求的有_______人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場計(jì)劃購進(jìn),兩種新型節(jié)能臺燈共120盞,這兩種臺燈的進(jìn)價和售價如表所示:

價格

類型

進(jìn)價(元/盞)

售價(元/盞)

40

55

60

80

1)若商場恰好用完預(yù)計(jì)進(jìn)貨款5500元,則應(yīng)這購進(jìn)兩種臺燈各多少盞?

2)若商場規(guī)定型臺燈的進(jìn)貨數(shù)量不超過型臺燈數(shù)量的3倍,應(yīng)怎樣進(jìn)貨才能使商場在銷售完這兩種臺燈時獲得的毛利潤最多?最多毛利潤為多少元?(毛利潤=銷售收入-進(jìn)貨成本).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,雙曲線y1與直線y2的圖象交于AB兩點(diǎn).已知點(diǎn)A的坐標(biāo)為(4,1),點(diǎn)Pa,b)是雙曲線y1上的任意一點(diǎn),且0a4

1)分別求出y1、y2的函數(shù)表達(dá)式;

2)連接PA、PB,得到△PAB,若4ab,求三角形ABP的面積;

3)當(dāng)點(diǎn)P在雙曲線y1上運(yùn)動時,設(shè)PBx軸于點(diǎn)E,延長PAx軸于點(diǎn)F,判斷PEPF的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,BCx軸,垂足為D,邊AB所在直線分別交x軸、y軸于點(diǎn)EF,且AFEF,反比例函數(shù)y的圖象經(jīng)過AC兩點(diǎn),已知點(diǎn)A2,n).

1)求AB所在直線對應(yīng)的函數(shù)表達(dá)式;(2)求點(diǎn)C的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案