【題目】自從開展“創(chuàng)建全國(guó)文明城區(qū)“工作以來,門頭溝區(qū)便掀起了“門頭溝熱心人“志愿服務(wù)的熱潮,區(qū)教委也號(hào)召各校學(xué)生積極參與到志愿服務(wù)當(dāng)中.為了解甲、乙兩所學(xué)校學(xué)生一周志愿服務(wù)情況,從這兩所學(xué)校中各隨機(jī)抽取40名學(xué)生,分別對(duì)他們一周的志愿服務(wù)時(shí)長(zhǎng)(單位:分鐘)數(shù)據(jù)進(jìn)行收集、整理、描述和分析.下面給出了部分信息:
a.甲校40名學(xué)生一周的志愿服務(wù)時(shí)長(zhǎng)的扇形統(tǒng)計(jì)圖如圖(數(shù)據(jù)分成6組:):
A: B:
C: D:
E: F:
b.甲校40名學(xué)生一周志愿服務(wù)時(shí)長(zhǎng)在這一組的是:
60 60 62 63 65 68 70 72 73 75 75 76 80 80
c.甲、乙兩校各抽取的40名學(xué)生一周志愿服務(wù)時(shí)長(zhǎng)的平均數(shù)、中位數(shù)、眾數(shù)如下:
學(xué)校 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
甲校 | 75 | 90 | |
乙校 | 75 | 76 | 85 |
根據(jù)以上信息,回答下列問題:
(1)_____________;
(2)根據(jù)上面的統(tǒng)計(jì)結(jié)果,你認(rèn)為____①_____所學(xué)校學(xué)生志愿服務(wù)工作做得好(填“甲“或“乙“),理由______②________________________________________________________;
(3)甲校要求學(xué)生一周志愿服務(wù)的時(shí)長(zhǎng)不少于60分鐘,如果甲校共有學(xué)生800人,請(qǐng)估計(jì)甲校學(xué)生中一周志愿服務(wù)時(shí)長(zhǎng)符合要求的有_______人.
【答案】(1)78;(2)甲,兩校時(shí)間平均數(shù)相同,但甲校眾數(shù)大于乙校,說明甲校學(xué)生有更多的學(xué)生能多花時(shí)間去做志愿服務(wù),積極性更高;(3)640
【解析】
(1)根據(jù)題意判斷出甲校的中位數(shù)在這組,再根據(jù)中位數(shù)的求法求解即可;
(2)在平均數(shù)相同的前提下,利用眾數(shù)分析可得;
(3)用總?cè)藬?shù)800乘以樣本中符合要求的比例即可.
解:(1)根據(jù)扇形統(tǒng)計(jì)圖可得:
A,B組共有40(5%+15%)=8(人)
甲校學(xué)生時(shí)間的中位數(shù)在第20,和21位,在C組,即在,
由甲校40名學(xué)生一周志愿服務(wù)時(shí)長(zhǎng)在這一組的是:
可得中位數(shù)為,
故m=78;
(2)甲校志愿服務(wù)工作做得好,
理由是:∵兩校時(shí)間平均數(shù)相同,但甲校中位數(shù),眾數(shù)大于乙校,說明甲校學(xué)生有更多的學(xué)生能多花時(shí)間去做志愿服務(wù),積極性更高;
(3)由圖可得:
800×(35%+22.5%+17.5%+5%)=640人,
∴甲校學(xué)生中一周志愿服務(wù)時(shí)長(zhǎng)符合要求的有640人,
故答案為:640.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k<0)的圖象與反比例函數(shù)y=圖象都經(jīng)過點(diǎn)A(a,4),一次函數(shù)y=kx+b(k<0)的圖象經(jīng)過點(diǎn)C(3,0),且與兩坐標(biāo)軸圍成的三角形的面積為3.
(1)求這兩個(gè)函數(shù)的表達(dá)式;
(2)將直線AB向下平移5個(gè)單位長(zhǎng)度后與第四象限內(nèi)的反比例函數(shù)圖象交于點(diǎn)D,連接AD、BD,求△ADB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于點(diǎn)A(a,3)和B(-3,1).
(1)求k、b的值.
(2)點(diǎn)P是x軸上一點(diǎn),連接PA,PB,當(dāng)△PAB的周長(zhǎng)最小時(shí)求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,正方形.... 按如圖的方式放置.點(diǎn)和點(diǎn)分別落在直線和軸上.拋物線過點(diǎn),且頂點(diǎn)在直線上,拋物線過點(diǎn),且頂點(diǎn)在直線上,...按此規(guī)律,拋物線,過點(diǎn), 且頂點(diǎn)也在直線上,其中拋物線交正方形的邊于點(diǎn),拋物線交正方形的邊于點(diǎn)(其中且為正整數(shù)) .
(1)直接寫出下列點(diǎn)的坐標(biāo): , ;
(2)寫出拋物線的解析式,并寫出拋物線的解析式求解過程,再猜想拋物線的頂點(diǎn)坐標(biāo);
(3)設(shè),試判斷與的數(shù)量關(guān)系并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某租賃公司有型兩種客車,它們的載客量和租金標(biāo)準(zhǔn)如下:
客車類型 | 載客量(人/輛) | 租金(元/輛) |
型 | 45 | 400 |
型 | 30 | 280 |
如果某學(xué)校計(jì)劃組織195名師生到培訓(xùn)基地參加社會(huì)實(shí)踐活動(dòng),那么租車的總費(fèi)用最低為____________________元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖正方形先向右平移1個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,得到正方形,形成了中間深色的正方形及四周淺色的邊框,已知正方形的面積為16,則四周淺色邊框的面積是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=6,∠DAB=60°,AE分別交BC、BD于點(diǎn)E、F,若CE=2,連接CF.以下結(jié)論:①∠BAF=∠BCF; ②點(diǎn)E到AB的距離是2; ③S△CDF:S△BEF=9:4; ④tan∠DCF=3/7. 其中正確的有()
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在坐標(biāo)系中放置一菱形OABC,已知∠ABC=60°,OA=1.先將菱形OABC沿x軸的正方向無滑動(dòng)翻轉(zhuǎn),每次翻轉(zhuǎn)60°,連續(xù)翻轉(zhuǎn)2020次,點(diǎn)B的落點(diǎn)依次為B1,B2,B3,…,則B2020的坐標(biāo)為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別以△ABC的邊AB、AC為一邊向外做正方形ABDE和正方形ACFG,連結(jié)CE、BG交于點(diǎn)P,連結(jié)AP和EG.在不添加任何輔助線和字母的前提下,寫出四個(gè)不同類型的結(jié)論_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com