【題目】已知B港口位于A觀測(cè)點(diǎn)北偏東53.2°方向,且其到A觀測(cè)點(diǎn)正北方向的距離BD的長(zhǎng)為16km,一艘貨輪從B港口以40km/h的速度沿如圖所示的BC方向航行,15min后達(dá)到C處,現(xiàn)測(cè)得C處位于A觀測(cè)點(diǎn)北偏東79.8°方向,求此時(shí)貨輪與A觀測(cè)點(diǎn)之間的距離AC的長(zhǎng)(精確到0.1km).(參考數(shù)據(jù):sin53.2°≈0.80,cos53.2°≈0.60,sin79.8°≈0.98,cos79.8°≈0.18,tan26.6°≈0.50,≈1.41,≈2.24)

【答案】解:由路程=速度×?xí)r間,得BC=40×=10。

在RtADB中,sinDBA=,sin53.2°≈0.8,

AB=。

如圖,過(guò)點(diǎn)B作BHAC,交AC的延長(zhǎng)線(xiàn)于H,

在RtAHB中,BAH=DAC-DAB=63.6°-37°=26.6°,

tanBAH=,0.5=,AH=2BH。

BH2+AH2=AB2,即BH2+(2BH)2=202,BH=4, AH=8。

在RtBCH中,BH2+CH2=BC2,即(42+CH2=102,解得CH=2

AC=AH-CH=8-2=6≈13.4。

答:此時(shí)貨輪與A觀測(cè)點(diǎn)之間的距離AC約為13.4km。

解析解直角三角形的應(yīng)用(方向角問(wèn)題)銳角三角函數(shù)定義,勾股定理。

根據(jù)在RtADB中,sinDBA=,得出AB的長(zhǎng),從而得出tanBAH=,求出BH的長(zhǎng),即可得出AH以及CH的長(zhǎng),從而得出答案。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題情境:如圖1,ABCD,PAB=130°,PCD=120°,求∠APC的度數(shù).

小明的思路是:過(guò)PPEAB,通過(guò)平行線(xiàn)性質(zhì)來(lái)求∠APC.

(1)按小明的思路,易求得∠APC的度數(shù)為_____度;

(2)問(wèn)題遷移:如圖2,ABCD,點(diǎn)P在射線(xiàn)OM上運(yùn)動(dòng),記∠PAB=α,PCD=β,當(dāng)點(diǎn)PB、D兩點(diǎn)之間運(yùn)動(dòng)時(shí),問(wèn)∠APCα、β之間有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;

(3)(2)的條件下,如果點(diǎn)PB、D兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)O、B、D三點(diǎn)不重合),請(qǐng)直接寫(xiě)出∠APCα、β之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將ABCD的邊AB延長(zhǎng)至點(diǎn)E,使BE=AB,連接DE、ECBD、DEBC于點(diǎn)O

1)求證:△ABD≌△BEC

2)若∠BOD=2∠A,求證:四邊形BECD是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著新農(nóng)村的建設(shè)和舊城的改造,我們的家園越來(lái)越美麗,小明家附近廣場(chǎng)中央新修了一個(gè)圓形噴水池,在水池中心豎直安裝了一根高米的噴水管,它噴出的拋物線(xiàn)形水柱在與池中心的水平距離為米處達(dá)到最高,水柱落地處離池中心米.

(1)請(qǐng)你建立適當(dāng)?shù)闹苯亲鴺?biāo)系,并求出水柱拋物線(xiàn)的函數(shù)解析式;

(2)求出水柱的最大高度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)A、B在數(shù)軸上分別表示實(shí)數(shù)ab,AB兩點(diǎn)之間的距離表示為AB|ab|,回答下列問(wèn)題:

1)數(shù)軸上表示1和﹣3的兩點(diǎn)之間的距離是   

2)數(shù)軸上表示x和﹣1的兩點(diǎn)分別是點(diǎn)AB,如果AB2,那么x   ;

3)當(dāng)|x6|+|x1|的最小值是   。若|x3|+|xb|的最小值為4,則b的值為   。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:

1

2

3(代入消元法);

4(加減消元法)

解不等式組,并把解集在數(shù)軸上表示出來(lái):

5;

6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在東營(yíng)市中小學(xué)標(biāo)準(zhǔn)化建設(shè)工程中,某學(xué)校計(jì)劃購(gòu)進(jìn)一批電腦和電子白板,經(jīng)過(guò)市場(chǎng)考察得知,購(gòu)買(mǎi)1臺(tái)電腦和2臺(tái)電子白板需要3.5萬(wàn)元,購(gòu)買(mǎi)2臺(tái)電腦和1臺(tái)電子白板需要2.5萬(wàn)元.

1)求每臺(tái)電腦、每臺(tái)電子白板各多少萬(wàn)元?

2)根據(jù)學(xué)校實(shí)際,需購(gòu)進(jìn)電腦和電子白板共30臺(tái),總費(fèi)用不超過(guò)30萬(wàn)元,但不低于28萬(wàn)元,請(qǐng)你通過(guò)計(jì)算求出有幾種購(gòu)買(mǎi)方案,哪種方案費(fèi)用最低.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠ABC=ACB,AD、BD、CD分別平分ABC的外角∠EAC、內(nèi)角∠ABC、外角∠ACF.以下結(jié)論:①ADBC;②∠ACB=2ADB;③∠ADC=90°﹣∠ABD;④∠BDC=BAC.其中正確的結(jié)論的有__________.(把正確結(jié)論的序號(hào)都寫(xiě)上去)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】求若干個(gè)相同的不為零的有理數(shù)的除法運(yùn)算叫做除方.

如:2÷2÷2,(-3)÷(-3)÷(-3 )÷( -3)等. 類(lèi)比有理數(shù)的乘方,我們把 2÷2÷2 記作 2,讀作“2 的圈 3 次方”. (-3)÷(-3)÷(-3 )÷( -3)記作(-3),讀作“-3 的圈 4 次方”.

一般地,把(a≠0)記作,讀作“a的圈n次方”.

(1)直接寫(xiě)出計(jì)算結(jié)果 _____, _________, ___________,

(2)我們知道,有理數(shù)的減法運(yùn)算可以轉(zhuǎn)化為加法運(yùn)算除法運(yùn)算可以轉(zhuǎn)化為乘法運(yùn)算,

請(qǐng)嘗試將有理數(shù)的除方運(yùn)算轉(zhuǎn)化為乘方運(yùn)算,歸納如下一個(gè)非零有理數(shù)的圈 n 次方等于_____.

(3)計(jì)算 .

查看答案和解析>>

同步練習(xí)冊(cè)答案