【題目】解不等式:3﹣2(x﹣1)<1.

【答案】解:3﹣2x+2<1, 得:﹣2x<﹣4,
∴x>2
【解析】首先去括號,然后移項(xiàng)合并同類項(xiàng),系數(shù)化為1,即可求解.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解一元一次不等式的解法的相關(guān)知識,掌握步驟:①去分母;②去括號;③移項(xiàng);④合并同類項(xiàng); ⑤系數(shù)化為1(特別要注意不等號方向改變的問題).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)于角的說法正確的個數(shù)是( )
①角是由兩條有公共端點(diǎn)的射線組成的圖形;②角的邊越長,角越大;③在角一邊延長線上取一點(diǎn)D;④角可以看作由一條射線繞著它的端點(diǎn)旋轉(zhuǎn)而形成的圖形
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,將三角形各頂點(diǎn)的縱坐標(biāo)都減去5,橫坐標(biāo)保持不變,所得圖形與原圖形相比( )

A. 向上平移了5個單位B. 向下平移了5個單位

C. 向左平移了5個單位D. 向右平移了5個單位

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將矩形AOCD沿直線AE折疊(點(diǎn)E在邊DC上),折疊后端點(diǎn)D恰好落在邊OC上的點(diǎn)F處.若點(diǎn)D的坐標(biāo)為(10,8),則點(diǎn)E的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為O的直徑,C是O上一點(diǎn),過點(diǎn)C的直線交AB的延長線于點(diǎn)D,AEDC,垂足為E,F(xiàn)是AE與O的交點(diǎn),AC平分BAE.

1求證:DE是O的切線;

2若AE=6,D=30°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“4000輛自行車、187個服務(wù)網(wǎng)點(diǎn)”,臺州市區(qū)現(xiàn)已實(shí)現(xiàn)公共自行車服務(wù)全覆蓋,為人們的生活帶來了方便.圖①是公共自行車的實(shí)物圖,圖②是公共自行車的車架示意圖,點(diǎn)A、D、C、E在同一條直線上,CD=30cm,DF=20cm,AF=25cm,F(xiàn)D⊥AE于點(diǎn)D,座桿CE=15cm,且∠EAB=75°.

(1)求AD的長;

(2)求點(diǎn)E到AB的距離.(參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的對角線AC與BD交于點(diǎn)O,AC=6,BD=8.動點(diǎn)E從點(diǎn)B出發(fā),沿著B﹣A﹣D在菱形ABCD的邊上運(yùn)動,運(yùn)動到點(diǎn)D停止.點(diǎn)F是點(diǎn)E關(guān)于BD的對稱點(diǎn),EF交BD于點(diǎn)P,若BP=x,△OEF的面積為y,則y與x之間的函數(shù)圖象大致為( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著教育信息化的發(fā)展,學(xué)生的學(xué)習(xí)方式日益增多. 教師為了指導(dǎo)學(xué)生有幸效利用網(wǎng)絡(luò)進(jìn)行學(xué)習(xí),對學(xué)生進(jìn)行了隨機(jī)問卷調(diào)查(問卷調(diào)查表如圖所示),并用調(diào)查結(jié)果繪制了圖1、圖2兩幅統(tǒng)計(jì)圖(均不完整),請根據(jù)統(tǒng)計(jì)圖解答以下問題:

(1)本次接受問卷調(diào)查的學(xué)生共有 人;在扇形統(tǒng)計(jì)圖中“D”選項(xiàng)所占的百分比為

(2)扇形統(tǒng)計(jì)圖中,“B”選項(xiàng)所對應(yīng)扇形圓心角為 度;

(3)請補(bǔ)全條形統(tǒng)計(jì)圖;

(4)若該校共有1200名學(xué)生,請你估計(jì)該校學(xué)生課外利用網(wǎng)絡(luò)學(xué)習(xí)的時間在“A”選項(xiàng)的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在矩形ABCD中,AB=8,BC=12,四邊形EFGH的三個頂點(diǎn)E、F、H分別在矩形ABCD邊AB、BC、DA上,AE=2.
(1)如圖1,當(dāng)四邊形EFGH為正方形時,求△GFC的面積;
(2)如圖2,當(dāng)四邊形EFGH為菱形時,設(shè)BF=x,△GFC的面積為S,求S關(guān)于x的函數(shù)關(guān)系式,并寫出函數(shù)的定義域.

查看答案和解析>>

同步練習(xí)冊答案