【題目】ABC和△CDE是以點(diǎn)C為公共頂點(diǎn)的兩個(gè)三角形.

1)如圖1,當(dāng)ABAC,CDCE,∠BAC=∠DCE90°時(shí),連接BD,取BD的中點(diǎn)M,連接AM.探究AM、BE之間的數(shù)量關(guān)系,并證明你的結(jié)論;

2)如圖2,當(dāng)ABAC,∠BAC120°,∠CDE60°,∠DCE90°時(shí),連接BD,取BD的中點(diǎn)M,連接AM.探究AM、BE之間的關(guān)系,并證明你的結(jié)論.

【答案】(1)BE2AM;(2)AMBE,且BE2AM

【解析】

1)延長(zhǎng)AMDC交于點(diǎn)P,利用BD的中點(diǎn)M構(gòu)建全等的三角形△ABM≌△PDM,得出AP2AM;再證△ABE≌△ACP,證出BEAP2AM;

2)取BC的中點(diǎn)P,連接MPAP,延長(zhǎng)AMBC于點(diǎn)N,交BE于點(diǎn)H,利用三角形的中位線得到CD=2MP,在利用直角三角形△DCE證得2,利用等腰三角形的性質(zhì)同理得到2,由此得到,再證△APM∽△BCE得到2,即BE2AM;再根據(jù)等角的代換關(guān)系得到∠EBC+BNH90°即∠AHB90°,得到AMBE.

1BE2AM

證明:如圖1,延長(zhǎng)AM、DC交于點(diǎn)P

∵∠BAC=∠DCE90°,∴ABCD

∴∠1=∠P

MBD中點(diǎn),

BMDM

∵∠3=∠2

∴△ABM≌△PDMAAS).

ABPDAC,AMPM

AP2AM

CDCE,

ACCEDPCD,即AECP

∵∠ACP180°﹣∠DCE90°=∠BAC,

ABAC

∴△ABE≌△ACPSAS

BEAP2AM

2AMBE,且BE2AM

證明:如圖2,取BC的中點(diǎn)P,連接MPAP,延長(zhǎng)AMBC于點(diǎn)N,交BEH

MBD中點(diǎn),

MPCDCD2MP,

RtDCE中,∵∠CDE60°,∠DCE90°,

∴∠DEC30°,

DE2CD

根據(jù)勾股定理,得ECCD,

2

ABAC,PBC中點(diǎn),

APBCBC2BP,∠BAP=∠CAP,

∵∠BAC120°,

∴∠BAP60°.

同理,BPAP,

2

MPCD∴∠MPB=∠BCD

∵∠BPA=∠DCE90°.

∴∠BPA﹣∠MPB=∠DCE﹣∠BCD,

∴∠MPA=∠ECB

∴△APM∽△BCE

2,即BE2AM

PAM=∠EBC

∵∠PAM+ANP90°,∠ANP=∠BNH,

∴∠EBC+BNH90°.

∴∠AHB90°.

AMBE

所以AM、BE之間的關(guān)系為:AMBE,BE2AM

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD中,BF平分∠ABCAD于點(diǎn)F,CE平分∠DCBAD于點(diǎn)E,BFCE相交于點(diǎn)P.

(1)求證:AE=DF.

(2)已知AB=4,AD=5.

①求的值;

②求四邊形ABPE的面積與△BPC的面積之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019423日是第二十四個(gè)世界讀書日.某校組織讀書征文比賽活動(dòng),評(píng)選出一、二、三等獎(jiǎng)若干名,并繪成如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(不完整),請(qǐng)你根據(jù)圖中信息解答下列問(wèn)題:

1)求本次比賽獲獎(jiǎng)的總?cè)藬?shù),并補(bǔ)全條形統(tǒng)計(jì)圖;

2)求扇形統(tǒng)計(jì)圖中二等獎(jiǎng)所對(duì)應(yīng)扇形的圓心角度數(shù);

3)學(xué)校從甲、乙、丙、丁4位一等獎(jiǎng)獲得者中隨機(jī)抽取2人參加世界讀書日宣傳活動(dòng),請(qǐng)用列表法或畫樹狀圖的方法,求出恰好抽到甲和乙的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y1=k1x+b(k1≠0)的圖象分別與x軸,y軸相交于點(diǎn)A,B,與反比例函數(shù)y2= 的圖象相交于點(diǎn)C(﹣4,﹣2),D(2,4).

(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;

(2)當(dāng)x為何值時(shí),y1>0;

(3)當(dāng)x為何值時(shí),y1<y2,請(qǐng)直接寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰△ABCABBC,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)α角時(shí),點(diǎn)A的對(duì)應(yīng)點(diǎn)A′恰好落在AB邊上,則∠ACB_____(用含α的式子來(lái)表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為弘揚(yáng)中華傳統(tǒng)文化,黔南州近期舉辦了中小學(xué)生國(guó)學(xué)經(jīng)典大賽.比賽項(xiàng)目為:A.唐詩(shī);B.宋詞;C.論語(yǔ);D.三字經(jīng).比賽形式分單人組雙人組”.

(1)小麗參加單人組,她從中隨機(jī)抽取一個(gè)比賽項(xiàng)目,恰好抽中三字經(jīng)的概率是多少?

(2)小紅和小明組成一個(gè)小組參加雙人組比賽,比賽規(guī)則是:同一小組的兩名隊(duì)員的比賽項(xiàng)目不能相同,且每人只能隨機(jī)抽取一次,則恰好小紅抽中唐詩(shī)且小明抽中宋詞的概率是多少?請(qǐng)用畫樹狀圖或列表的方法進(jìn)行說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AD=6,AB=10,一個(gè)三角形的直角頂點(diǎn)E是邊AB上的一動(dòng)點(diǎn),一直角邊過(guò)點(diǎn)D,另一直角邊與BC交于F,若AE=xBF=y,則y關(guān)于x的函數(shù)關(guān)系的圖象大致為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程:

1)(x522x5

22x2+3x10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】山西省實(shí)驗(yàn)中學(xué)欲向清華大學(xué)推薦一名學(xué)生,根據(jù)規(guī)定的推薦程序:首先由本年級(jí)200名學(xué)生民主投票,每人只能推薦一人(不設(shè)棄權(quán)票),選出了票數(shù)最多的甲、乙、丙三人.投票結(jié)果統(tǒng)計(jì)如圖1

其次,對(duì)三名候選人進(jìn)行了筆試和面試兩項(xiàng)測(cè)試.各項(xiàng)成績(jī)?nèi)绫硭荆?/span>

測(cè)試項(xiàng)目

測(cè)試成績(jī)/

筆試

92

90

95

面試

85

95

80

2是某同學(xué)根據(jù)上表繪制的一個(gè)不完全的條形圖.請(qǐng)你根據(jù)以上信息解答下列問(wèn)題:

1)補(bǔ)全圖1和圖2

2)請(qǐng)計(jì)算每名候選人的得票數(shù);

3)若每名候選人得一票記1分,投票、筆試、面試三項(xiàng)得分按照253的比確定,計(jì)算三名候選人的平均成績(jī),成績(jī)高的將被錄取,應(yīng)該錄取誰(shuí)?

4)若學(xué)校決定從這三名候選人中隨機(jī)選兩名參加清華大學(xué)夏令營(yíng),求甲和乙被選中的概率.(要求列表或畫樹狀圖)

查看答案和解析>>

同步練習(xí)冊(cè)答案