在平面直角坐標(biāo)系中,邊長為3的正方形OABC的兩頂點(diǎn)A、C分別在y軸、x軸的正半軸上,點(diǎn)O在原點(diǎn).現(xiàn)將正方形OABC繞O點(diǎn)順時(shí)針旋轉(zhuǎn),當(dāng)A點(diǎn)第一次落在直線y=x上時(shí)停止旋轉(zhuǎn),旋轉(zhuǎn)過程中,AB邊交直線y=x于點(diǎn)M,BC邊交x軸于點(diǎn)N(如圖).在旋轉(zhuǎn)正方形OABC的過程中,△MBN的周長為 


6 【考點(diǎn)】一次函數(shù)綜合題.

【分析】通過證△OAE≌△OCN(ASA)和△OME≌△OMN(SAS),把△MBN的各邊整理成與正方形的邊長有關(guān)的式子即可.

【解答】解:∵A點(diǎn)第一次落在直線y=x上時(shí)停止旋轉(zhuǎn),直線y=x與y軸的夾角是45°,

∴OA旋轉(zhuǎn)了45°.

如圖所示:延長BA交y軸于E點(diǎn),

則∠AOE=45°﹣∠AOM,∠CON=90°﹣45°﹣∠AOM=45°﹣∠AOM,

∴∠AOE=∠CON.

又∵OA=OC,∠OAE=180°﹣90°=90°=∠OCN,

在△OAE和△OCN中,

∴△OAE≌△OCN(ASA).

∴OE=ON,AE=CN.

在△OME和△OMN中,

∴△OME≌△OMN(SAS).

∴MN=ME=AM+AE.

∴MN=AM+CN,

∴△MBN的周長為:MN+BN+BM=AM+CN+BN+BM=AB+BC=6.

故答案是:6.

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


先化簡,再求值:,其中

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


用適當(dāng)?shù)牟坏仁奖硎鞠铝袛?shù)量關(guān)系:

x與-6的和大于2;           

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在平面直角坐標(biāo)系中,直線y=﹣x+b分別與x軸、y軸交于點(diǎn)A、B,且點(diǎn)A的坐標(biāo)為(4,0),四邊形ABCD是正方形.

(1)填空:b=   

(2)求點(diǎn)D的坐標(biāo);

(3)點(diǎn)M是線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)A、B除外),試探索在x上方是否存在另一個(gè)點(diǎn)N,使得以O(shè)、B、M、N為頂點(diǎn)的四邊形是菱形?若不存在,請(qǐng)說明理由;若存在,請(qǐng)求出點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個(gè)頂點(diǎn)分別是A(﹣4,2)、

B(0,4)、C(0,2),

(1)畫出△ABC關(guān)于點(diǎn)C成中心對(duì)稱的△A1B1C;平移△ABC,若點(diǎn)A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為(0,﹣4),畫出平移后對(duì)應(yīng)的△A2B2C2;

(2)△A1B1C和△A2B2C2關(guān)于某一點(diǎn)成中心對(duì)稱,則對(duì)稱中心的坐標(biāo)為。 ) 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,菱形ABCD的邊長為5,對(duì)角線AC=6.則菱形ABCD的面積為  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在方格紙上上建立的平面直角坐標(biāo)系中,將OA繞原點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)180°得到OA′,則點(diǎn)A′的坐標(biāo)為( 。

A.(3,1)   B.(3,﹣1)       C.(1,﹣3)       D.(1,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,拋物線y=ax2﹣4和y=﹣ax2+4都經(jīng)過x軸上的A、B兩點(diǎn),兩條拋物線的頂點(diǎn)分別為C、D.當(dāng)四邊形ACBD的面積為40時(shí),a的值為  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


 的值是___________.

查看答案和解析>>

同步練習(xí)冊(cè)答案