【題目】在矩形ABCD中,AB=5cm,BC=10cm,點(diǎn)P從點(diǎn)A出發(fā),沿AB邊向點(diǎn)B以每秒1cm的速度移動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā)沿BC邊向點(diǎn)C以每秒2cm的速度移動(dòng),P、Q兩點(diǎn)在分別到達(dá)B、C兩點(diǎn)時(shí)就停止移動(dòng),設(shè)兩點(diǎn)移動(dòng)的時(shí)間為t秒,解答下列問(wèn)題:
(1)如圖1,當(dāng)t為幾秒時(shí),△PBQ的面積等于4cm2?
(2)如圖2,以Q為圓心,PQ為半徑作⊙Q.在運(yùn)動(dòng)過(guò)程中,是否存在這樣的t值,使⊙Q正好與四邊形DPQC的一邊(或邊所在的直線)相切?若存在,求出t值;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)t=1秒或4秒;(2)t=0秒或(﹣15+)秒.
【解析】
(1)由題意可知PA=t,BQ=2t,從而得到PB=5﹣t,BQ=2t,然后根據(jù)△PQB的面積=4cm2列方程求解即可;
(2)當(dāng)t=0時(shí),點(diǎn)P與點(diǎn)A重合時(shí),點(diǎn)B與點(diǎn)Q重合,此時(shí)圓Q與PD相切;當(dāng)⊙Q正好與四邊形DPQC的DC邊相切時(shí),由圓的性質(zhì)可知QC=QP,然后依據(jù)勾股定理列方程求解即可;
解:(1)∵當(dāng)運(yùn)動(dòng)時(shí)間為t秒時(shí),PA=t,BQ=2t,
∴PB=5﹣t,BQ=2t.
∵△PBQ的面積等于4cm2,
∴PBBQ=(5﹣t)2t.
∴(5﹣t)2t=4.
解得:t1=1,t2=4.
答:當(dāng)t為1秒或4秒時(shí),△PBQ的面積等于4cm2;
(2)由題意可知圓Q與PQ、CQ不相切.下面分兩種情況討論:
(Ⅰ)如圖1所示:當(dāng)t=0時(shí),點(diǎn)P與點(diǎn)A重合時(shí),點(diǎn)B與點(diǎn)Q重合.
∵∠DAB=90°,
∴∠DPQ=90°.
∴DP⊥PQ.
∴DP為圓Q的切線.
(Ⅱ)當(dāng)⊙Q正好與四邊形DPQC的DC邊相切時(shí),如圖2所示.
由題意可知:PB=5﹣t,BQ=2t,PQ=CQ=10﹣2t.
在Rt△PQB中,由勾股定理可知:PQ2=PB2+QB2,即(5﹣t)2+(2t)2=(10﹣2t)2.
解得:t1=﹣15+,t2=﹣15﹣(舍去).
綜上所述可知當(dāng)t=0秒或t=(﹣15+)秒時(shí),⊙Q與四邊形DPQC的一邊相切.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C、D在半圓上,,過(guò)D作DE⊥BC于E.
(1)求證:DE是⊙O的切線.
(2)若DE=2CE=4,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,過(guò)點(diǎn)B的直線交x軸于C,且面積為10.
(1)求點(diǎn)C的坐標(biāo)及直線BC的解析式;
(2)如圖1,設(shè)點(diǎn)F為線段AB中點(diǎn),點(diǎn)G為y軸上一動(dòng)點(diǎn),連接FG,以FG為邊向FG右側(cè)作正方形FGQP,在G點(diǎn)的運(yùn)動(dòng)過(guò)程中,當(dāng)頂點(diǎn)Q落在直線BC上時(shí),求點(diǎn)G的坐標(biāo);
(3)如圖2,若M為線段BC上一點(diǎn),且滿足,點(diǎn)E為直線AM上一動(dòng)點(diǎn),在x軸上是否存在點(diǎn)D,使以點(diǎn)D、E、B、C為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等腰三角形,AB=AC,點(diǎn)D是AB上一點(diǎn),過(guò)點(diǎn)D作DE⊥BC交BC于點(diǎn)E,交CA延長(zhǎng)線于點(diǎn)F.
(1)證明:△ADF是等腰三角形;
(2)若∠B=60°,BD=4,AD=2,求EC的長(zhǎng),
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(0,6),點(diǎn)B(4,3),P是x軸上的一個(gè)動(dòng)點(diǎn).作OQ⊥AP,垂足為Q,則點(diǎn)Q到直線AB的距離的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知⊙O經(jīng)過(guò)四邊形ABCD的B、D兩點(diǎn),并與四條邊分別交于點(diǎn)E、F、G、H,且.
(1)如圖①,連接BD,若BD是⊙O的直徑,求證:∠A=∠C;
(2)如圖②,若的度數(shù)為θ,∠A=α,∠C=β,請(qǐng)直接寫出θ、α和β之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)經(jīng)營(yíng)某種品牌的計(jì)算器,購(gòu)進(jìn)時(shí)的單價(jià)是20元,根據(jù)市場(chǎng)調(diào)查:在一段時(shí)間內(nèi),銷售單價(jià)是30元時(shí),銷售量是600個(gè),而銷售單價(jià)每上漲1元,就會(huì)少售出10個(gè).
(1)不妨設(shè)該種品牌計(jì)算器的銷售單價(jià)為x元(x>30),請(qǐng)你分別用x的代數(shù)式來(lái)表示銷售量y個(gè)和銷售該品牌計(jì)算器獲得利潤(rùn)w元,并把結(jié)果填寫在表格中:
銷售單價(jià)(元) | x(x>30) |
銷售量y(個(gè)) |
|
銷售計(jì)算器獲得利潤(rùn)w(元) |
|
(2)在第(1)問(wèn)的條件下,若計(jì)算器廠規(guī)定該品牌計(jì)算器銷售單價(jià)不低于35元,且商場(chǎng)要完成不少于500個(gè)的銷售任務(wù),求:商場(chǎng)銷售該品牌計(jì)算器獲得最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖①,②,在矩形ABCD中,AB=4,BC=8,P,Q分別是邊BC,CD上的點(diǎn).
(1)如圖①,若AP⊥PQ,BP=2,求CQ的長(zhǎng);
(2)如圖②,若=2,且E,F,G分別為AP,PQ,PC的中點(diǎn),求四邊形EPGF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y1=x2﹣2x+c的部分圖象如圖1所示:
(1)確定c的取值范圍;
(2)若拋物線經(jīng)過(guò)點(diǎn)(0,﹣1),試確定拋物線y1=x2﹣2x+c的解析式;
(3)若反比例函數(shù)y2=的圖象經(jīng)過(guò)(2)中拋物線上點(diǎn)(1,a),試在圖2所示直角坐標(biāo)系中,畫出該反比例函數(shù)及(2)中拋物線的圖象,并利用圖象寫出當(dāng)y1>y2時(shí),對(duì)應(yīng)自變量x的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com