【題目】已知:如圖①,②,在矩形ABCD中,AB=4,BC=8,P,Q分別是邊BC,CD上的點.
(1)如圖①,若AP⊥PQ,BP=2,求CQ的長;
(2)如圖②,若=2,且E,F,G分別為AP,PQ,PC的中點,求四邊形EPGF的面積.
【答案】(1)CQ=3;(2)S四邊形EPGF=4.
【解析】
(1)易證△ABP∽△PCQ,根據(jù)對應(yīng)線段成比例即可求出CQ;
(2)取BP的中點H,連結(jié),由三角形的中位線的性質(zhì)可得四邊形是直角梯形,由=2,設(shè)CQ=a,則BP=2a,用含a的代數(shù)式表示出EH,FG,HP,HG,用梯形和三角形的面積公式求得的值即可.
解:(1)由△ABP∽△PCQ.
∴.
(2)取BP的中點H,連結(jié),由=2,
設(shè)CQ=a,則BP=2a,
∵E,F,G,H分別為AP,PQ,PC,BP的中點,
∴ , ,
又∵ ,,
∴ ,.
∴四邊形是直角梯形.
∴,
, .
∴S梯形EHGF===4+a,
S△EHP===a.
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖有兩個邊長為4cm的正方形,其中一個正方形的頂點在另一個正方形的中心上,繞著中心旋轉(zhuǎn)其中一個正方形,那么圖中陰影部分的面積是( 。
A. 無法確定B. 8cm2C. 16cm2D. 4cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】萬美服裝店準(zhǔn)備購進(jìn)一批兩種不同型號的衣服,已知若購進(jìn)A型號的衣服9件,B型號的衣服10件共需1 810元;若購進(jìn)A型號的衣服12件,B型號的衣服8件共需1 880元.已知銷售一件A型號的衣服可獲利18元,銷售一件B型號的衣服可獲利30元.
(1)求A、B型號衣服的進(jìn)價各是多少元?
(2)若已知購進(jìn)的A型號的衣服比B型號衣服的2倍還多4件,且購進(jìn)的A型號的衣服不多于28件,則該服裝店要想獲得的利潤不少于699元,在這次進(jìn)貨時可有幾種進(jìn)貨方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點A、C分別在x、y軸的正半軸上,頂點B的坐標(biāo)為(4,2).點M是邊BC上的一個動點(不與B、C重合),反比例函數(shù)y=(k>0,x>0)的圖象經(jīng)過點M且與邊AB交于點N,連接MN.
(1)當(dāng)點M是邊BC的中點時.
①求反比例函數(shù)的表達(dá)式;
②求△OMN的面積;
(2)在點M的運(yùn)動過程中,試證明:是一個定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠B=60°,點E、F分別從點B、D出發(fā)以同樣的速度沿邊BC、DC向點運(yùn)動.給出以下四個結(jié)論:①AE=AF②∠CEF=∠CFE③當(dāng)點E、F分別為邊BC、DC的中點時,△AEF是等邊三角形④當(dāng)點E、F分別為邊BC、DC的中點時,△AEF的面積最大.上述結(jié)論中正確的序號有________.(把你認(rèn)為正確的序號都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對非負(fù)實數(shù)x“四舍五入”到個位的值記為< x >,即已知n為正整數(shù),如果n-≤x<n+,那么< x >=n.例如:< 0 >=< 0.48 >=0,< 0.64 >=< 1.493 >=1,< 2 >=2,< 3.5 >=< 4.12 >=4,…則滿足方程< x >=的非負(fù)實數(shù)x的值為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角坐標(biāo)系中,直線分別交x,y軸于點A(-8,0),B(0,6),C(m,0)是射線AO上一動點,⊙P過B,O,C三點,交直線AB于點D(B,D不重合).
(1)求直線AB的函數(shù)表達(dá)式.
(2)若點D在第一象限,且tan∠ODC=,求點D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,BC>AB,在BC邊上取點D,使AB=BD,構(gòu)造正方形ABDE,DE交AC于點F,作EG⊥AC交AC于點G,交BC于點H.
(1)求證:△AEF≌△EDH.
(2)若AB=3,DH=2DF,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校學(xué)生對《最強(qiáng)大腦》、《朗讀者》、《中國詩詞大會》、《出彩中國人》四個電視節(jié)目的喜愛情況,隨機(jī)抽取了名學(xué)生進(jìn)行調(diào)查統(tǒng)計(要求每名學(xué)生選出并且只能選出一個自己最喜愛的節(jié)目),并將調(diào)查結(jié)果繪制成如下統(tǒng)計圖表:
根據(jù)以上提供的信息,解答下列問題:
(1)______,______,______;
(2)補(bǔ)全上面的條形統(tǒng)計圖;
(3)若該校共有學(xué)生1000名.根據(jù)抽樣調(diào)查結(jié)果,估計該校最喜愛《中國詩詞大會》節(jié)目的學(xué)生有多少名.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com