【題目】如圖,是一塊破損的木板.

(1)請你設(shè)計(jì)一種方案,檢驗(yàn)?zāi)景宓膬蓷l直線邊緣 AB、CD 是否平行;

(2)AB∥CD,連接 BC,過點(diǎn) A AM⊥BC M,垂足為 M,畫出圖形,并寫出∠BCD 與∠BAM 的數(shù)量關(guān)系.

【答案】1)見解析;(2)∠BCD+∠BAM=90°

【解析】

(1)根據(jù)平行線的判定即可得;
(2)根據(jù)題意作圖即可得,再利用平行線的性質(zhì)與直角三角形兩銳角互余可得答案.

(1)根據(jù)同位角相等,兩直線平行,可以畫一條直線截線段 AB CD,測量一對同位角,如果相等,則 ABCD,反之,則不平行.

(2)如圖所示:

ABCD,

∴∠BCD=ABC,

AMBC,

∴∠ABC+BAM=90°, 則∠BCD+BAM=90°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖示,AB∥CD,且點(diǎn)E在射線ABCD之間,請說明∠AEC=∠A+∠C的理由.

(2)現(xiàn)在如圖b示,仍有AB∥CD,但點(diǎn)EABCD的上方,請嘗試探索∠1,∠2,∠E三者的數(shù)量關(guān)系. ②請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABCD相交于點(diǎn)O,OE是∠AOD的平分線,若∠AOC=60°,OFOE

(1)判斷OF把∠AOC所分成的兩個(gè)角的大小關(guān)系并證明你的結(jié)論;

(2)求∠BOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A、B、C、D分別在正方形網(wǎng)格的格點(diǎn)上,其中A點(diǎn)的坐標(biāo)為(﹣1,5),B點(diǎn)的坐標(biāo)為(3,3),小明發(fā)現(xiàn),線段AB與線段CD存在一種特殊關(guān)系,即其中一條線段繞著某點(diǎn)旋轉(zhuǎn)一個(gè)角度可以得到另一條線段,則這個(gè)旋轉(zhuǎn)中心的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB∥CD,AD∥BC,∠A﹦3∠B.求∠A、∠B、∠C、∠D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列方程變形正確的是(  )

A. 方程3x-2=2x+1移項(xiàng),得3x-2x=-1+2

B. 方程3-x=2-5(x-1)去括號,得3-x=2-5x-1

C. 方程=1可化為3x=6

D. 方程x=-系數(shù)化為1,得x=-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把下列各數(shù)按要求分類.

﹣2,5,,0,﹣3.4,﹣21,π,,3.7,15%;

正數(shù)集合:{_____…},

負(fù)整數(shù)集合:{_____…},

分?jǐn)?shù)集合:{_____…}

非正數(shù)集合:{_____…}

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=kx﹣k與反比例函數(shù) 在同一直角坐標(biāo)系中的大致圖象是( 。
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,⊙O過BC的中點(diǎn)D,且DE⊥AC于點(diǎn)E.
(1)試判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若∠C=30°,CE=6,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊答案