【題目】如圖,已知AB是⊙O的直徑,⊙O過(guò)BC的中點(diǎn)D,且DE⊥AC于點(diǎn)E.
(1)試判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若∠C=30°,CE=6,求⊙O的半徑.

【答案】
(1)證明:連接OD.

∵D是BC的中點(diǎn),O是AB的中點(diǎn),

∴OD∥AC,

∴∠CED=∠ODE.

∵DE⊥AC,

∴∠CED=∠ODE=90°.

∴OD⊥DE,OD是圓的半徑,

∴DE是⊙O的切線.


(2)解:連接AD,

∵AB為直徑,

∴∠BDA=90°,

∵DE⊥AC,

∴∠CED=90°,

在Rt△CED中,cos∠C= ,cos30°= ,

解得:CD=4 ,

∵點(diǎn)D為BC的中點(diǎn),

∴BD=CD=4 ,

∴AC=AB,

∴∠B=∠C=30°,

在Rt△ABD中.cos∠B= ,cos30°= ,

解得AB=8,

故⊙O的半徑為4.


【解析】(1)連接OD,只要證明OD⊥DE即可.此題可運(yùn)用三角形的中位線定理證OD∥AC,因?yàn)镈E⊥AC,所以O(shè)D⊥DE.(2)通過(guò)相似三角形的性質(zhì)或三角函數(shù)的定義求出AB或圓的半徑的值即可.
【考點(diǎn)精析】利用切線的判定定理和解直角三角形對(duì)題目進(jìn)行判斷即可得到答案,需要熟知切線的判定方法:經(jīng)過(guò)半徑外端并且垂直于這條半徑的直線是圓的切線;解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是一塊破損的木板.

(1)請(qǐng)你設(shè)計(jì)一種方案,檢驗(yàn)?zāi)景宓膬蓷l直線邊緣 AB、CD 是否平行;

(2)AB∥CD,連接 BC,過(guò)點(diǎn) A AM⊥BC M,垂足為 M,畫(huà)出圖形,并寫(xiě)出∠BCD 與∠BAM 的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】星期天,玲玲騎自行車到郊外游玩,她離家的距離與時(shí)間的關(guān)系如圖所示,請(qǐng)根據(jù)圖象回答下列問(wèn)題.

(1)玲玲到達(dá)離家最遠(yuǎn)的地方是什么時(shí)間?離家多遠(yuǎn)?

(2)她何時(shí)開(kāi)始第一次休息?休息了多長(zhǎng)時(shí)間?

(3)她騎車速度最快是在什么時(shí)候?車速多少?

(4)玲玲全程騎車的平均速度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OEFG的頂點(diǎn)F的坐標(biāo)為(4,2),將矩形OEFG繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),使點(diǎn)F落在y軸上,得到矩形OMNP,OM與GF相交于點(diǎn)A.若經(jīng)過(guò)點(diǎn)A的反比例函數(shù) 的圖象交EF于點(diǎn)B,則點(diǎn)B的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在數(shù)軸上點(diǎn)A表示的有理數(shù)為﹣6,點(diǎn)B表示的有理數(shù)為6,點(diǎn)P從點(diǎn)A出發(fā)以每秒4個(gè)單位長(zhǎng)度的速度在數(shù)軸上由AB運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)B后立即返回,仍然以每秒4個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng)至點(diǎn)A停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(單位:秒).

(1)求t=1時(shí)點(diǎn)P表示的有理數(shù);

(2)求點(diǎn)P與點(diǎn)B重合時(shí)的t值;

(3)在點(diǎn)P沿?cái)?shù)軸由點(diǎn)A到點(diǎn)B再回到點(diǎn)A的運(yùn)動(dòng)過(guò)程中,求點(diǎn)P與點(diǎn)A的距離(用含t的代數(shù)式表示);

(4)當(dāng)點(diǎn)P表示的有理數(shù)與原點(diǎn)的距離是2個(gè)單位長(zhǎng)度時(shí),請(qǐng)求出所有滿足條件的t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰三角形ABC中,AB=AC,以底邊BC的垂直平分線和BC所在的直線建立平面直角坐標(biāo)系,拋物線y=﹣ x2+ x+4經(jīng)過(guò)A、B兩點(diǎn).

(1)寫(xiě)出點(diǎn)A、點(diǎn)B的坐標(biāo);
(2)若一條與y軸重合的直線l以每秒2個(gè)單位長(zhǎng)度的速度向右平移,分別交線段OA、CA和拋物線于點(diǎn)E、M和點(diǎn)P,連接PA、PB.設(shè)直線l移動(dòng)的時(shí)間為t(0<t<4)秒,求四邊形PBCA的面積S(面積單位)與t(秒)的函數(shù)關(guān)系式,并求出四邊形PBCA的最大面積;
(3)在(2)的條件下,拋物線上是否存在一點(diǎn)P,使得△PAM是直角三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,已知D,E分別為邊BC,AD的中點(diǎn),且SABC=4 cm2,則△BEC的面積為(  )

A. 2 cm2 B. 1 cm2 C. 0.5 cm2 D. 0.25 cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,PA、PB是⊙O的切線,A、B是切點(diǎn),點(diǎn)C是劣弧AB上的一個(gè)動(dòng)點(diǎn),若∠P=40°,則∠ACB的度數(shù)是( 。

A.80°
B.110°
C.120°
D.140°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在下列條件中,不能作為判斷ABD≌△BAC的條件是( )

A. D=C,BAD=ABC B. BAD=ABC,ABD=BAC

C. BD=AC,BAD=ABC D. AD=BC,BD=AC

查看答案和解析>>

同步練習(xí)冊(cè)答案