【題目】一扇窗戶如圖1所示,窗框和窗扇用“滑塊鉸鏈”連接.如圖2是圖1中“滑塊鉸鏈”的平面示意圖,滑軌MN安裝在窗框上,托懸臂DE安裝在窗扇上,支點4處裝有滑塊,滑塊可以左右滑動,支點B,C,D在一條直線上,延長DE交MN于點F.已知AC=DE=20cm,AE=CD=10cm,BD=40cm.
(1)當∠CAB=35 時,求窗扇與窗框的夾角∠DFB的度數(shù).
(2)當窗扇關閉時,圖中點E,A,D,C,B都在滑軌MN上.求此時點A與點B之間的距離.
(3)在(2)的前提下,將窗戶推開至四邊形ACDE為矩形時,求點A處的滑塊移動的距離.
【答案】(1)35°;(2)50,(3)
【解析】(1)根據(jù)兩組對邊分別相等的四邊形是平行四邊形,可證明四邊形AEDC是平行四邊形,再根據(jù)平行四邊形的性質,證明DF∥AC,從而可求出結果;
(2)將圖形抽象出來。先求出BC的長,再根據(jù)AB=AC+CB,就可求出答案;
(3)根據(jù)題意畫出圖形,利用勾股定理求出A1B的長,再利用A1A=AB-A1B,即可解答.
(1)解:∵AC=DE,AE=CD
∴四邊形AEDC是平行四邊形
∴DF∥AC
∴∠DFB=∠CAB=35°
(2)解:如圖
∵BC=BD-CD=40-10=30
∴AB=AC+CB=20+30=50
(3)解:如圖,窗戶戶推開至四邊形A1CDE為矩形時
在Rt△A1CB中,A1B=
∴點A處的滑塊移動的距離A1A=AB-A1B=50-.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD=5,BC=CD且BC>AB,BD=8.給出以下判斷:
①AC垂直平分BD;
②四邊形ABCD的面積S=ACBD;
③順次連接四邊形ABCD的四邊中點得到的四邊形可能是正方形;
④當A,B,C,D四點在同一個圓上時,該圓的半徑為;
⑤將△ABD沿直線BD對折,點A落在點E處,連接BE并延長交CD于點F,當BF⊥CD時,點F到直線AB的距離為.
其中正確的是_____.(寫出所有正確判斷的序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,對角線AC,BD交于點0,過點0的直線分別交邊AD,BC于點E,F(xiàn),EF=6.則AE2+BF2的值為( )
A. 9 B. 16 C. 18 D. 36
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:若點P為四邊形ABCD內一點,且滿足∠APB+∠CPD=180°, 則稱點P為四邊形ABCD的一個“互補點”.
(1)如圖1,點P為四邊形ABCD的一個“互補點”,∠APD=63°,求∠BPC的度數(shù).
(2)如圖2,點P是菱形ABCD對角線上的任意一點.求證:點P為菱形ABCD的一個“互補點”.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“十一”黃金周期間,某市在天中外出旅游的人數(shù)變化如下表(正數(shù)表示比前一天多的人數(shù),負數(shù)表示比前一天少的人數(shù))
日期 | 日 | 日 | 日 | 日 | 日 | 日 | 日 |
人數(shù)變化(萬人) |
(1)若月日外出旅游人數(shù)為,那么月日外出旅游的人數(shù)是多少?
(2)請判斷七天內外出旅游人數(shù)最多的是哪天?最少的是哪天?它們相差多少?
(3)如果最多一天有出游人數(shù)萬人,那么若月日外出旅游的有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)y=+bx+c圖像的一部分,圖像過點A(-3,0),對稱軸是直線x=-1,給出四個結論,其中正確結論的個數(shù)為( )
①c>0; ② 2a-b=0; ③<0. ④若點B(-, )、C(-,)在圖像上,則<
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知與互為余角,且平分平分.
(1)求的度數(shù);
(2)如果已知,其他條件不變,則_______度;如果已知,其他條件不變,則_______度;
(3)從以上求的過程中,你得出的結論是__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】建設銀行的某儲蓄員小張在辦理業(yè)務時,約定存入為正,取出為負. 2019年10月29日,他先后辦理了七筆業(yè)務: +2000元、-800元、+400元、-800元、+1400元、-1700元、-200元.
(1)若他早上領取備用金4000元,那么下班時應交回銀行_________元錢.
(2)請判斷在這七次辦理業(yè)務中,小張在第_______次業(yè)務辦理后手中現(xiàn)金最多,第_________次業(yè)務辦理后手中現(xiàn)金最少.
(3)若每辦一件業(yè)務,銀行發(fā)給業(yè)務量的0.2%作為獎勵,小張這天應得獎金多少元?
(4)若記小張第一次辦理業(yè)務前的現(xiàn)金為0點,用折線統(tǒng)計圖表示這7次業(yè)務辦理中小張手中現(xiàn)金的變化情況.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】請把下列證明過程補充完整.已知:如圖,B、C、E三點在同一直線上,A、F、E三點在同一直線上,∠1=∠2=∠E,∠3=∠4.求證:AB∥CD.
證明:∵∠2=∠E(已知)
∴ ∥BC( )
∴∠3=∠ ( )
∵∠3=∠4(已知)
∴∠4=∠ ( )
∵∠1=∠2(已知)
∴∠1+∠CAF=∠2+∠CAF ,即∠BAF=∠
∴∠4=∠ (等量代換)
∴ ( )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com