【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,小正方形的頂點叫做格點,ABC叫做格點三角形(三角形的頂點都是格點),請按要求完成:

(1)先將ABC豎直向上平移6個單位,再水平向右平移3個單位得到A1B1C1,請在網(wǎng)格中畫出A1B1C1;

(2)將A1B1C1繞點B1順時針旋轉(zhuǎn)90°,得到A2B1C2,請在網(wǎng)格中畫出A2B1C2;

(3)ABC沿直線B1 C2翻折,得到A3B3C,請在網(wǎng)格中畫出A3B3C;

(4)線段BC沿著由BB1的方向平移至線段B1C1,求線段BC掃過的面積.

【答案】(1)(2)(3)作圖見解析;(4)18.

【解析】分析:根據(jù)平移、旋轉(zhuǎn)、翻折的性質(zhì)分別作出圖形得出答案;根據(jù)平行四邊形的面積計算法則得出答案.

詳解:(1)、(2)、(3)、如圖所示:

(4)、S=3×6=18.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+2與直線l交于點A、B兩點,且A點為拋物線與y軸的交點,B(﹣2,﹣4),拋物線的對稱軸是直線x=2,過點A作AC⊥AB,交拋物線于點C、x軸于點D.

(1)求此拋物線的解析式;
(2)求點D的坐標;
(3)拋物線上是否存在點K,使得以AC為邊的平行四邊形ACKL的面積等于△ABC的面積?若存在,請直接寫出點K的橫坐標;若不存在,請說明理由.[提示:拋物線y=ax2+bx+c(a≠0)的對稱軸為x=﹣ ,頂點坐標為(﹣ , )].

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點B、C、D都在半徑為6的⊙O上,過點C作AC∥BD交OB的延長線于點A,連接CD,已知∠CDB=∠OBD=30°.
(1)求證:AC是⊙O的切線;
(2)求弦BD的長;
(3)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以直角三角形的直角頂點為原點,以所在直線為軸,軸建立平面直角坐標系,點滿足

(1)則點的坐標為__________點的坐標為____________.

(2)直角三角形的面積為_________.

(3)已知坐標軸上有兩動點同時出發(fā),點從點出發(fā)沿軸負方向以1個單位長度每秒的速度勻速移動,點從點出發(fā)以2個單位長度每秒的速度沿軸正方向移動,點到達點整個運動隨之結(jié)束。的中點的坐標是,設運動時間為秒,問:是否存在這樣的使?若存在,請求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在電線桿CD上的C處引拉線CE、CF固定電線桿,拉線CE和地面所成的角∠CED=60°,在離電線桿6米的B處安置高為1.5米的測角儀AB,在A處測得電線桿上C處的仰角為30°,求拉線CE的長(結(jié)果保留小數(shù)點后一位,參考數(shù)據(jù): ≈1.41, ≈1.73).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的球形容器上連接著兩根導管,容器中盛滿了不溶于水的比空氣重的某種氣體,現(xiàn)在要用向容器中注水的方法來排凈里面的氣體.水從左導管勻速地注入,氣體從右導管排出,那么,容器內(nèi)剩余氣體的體積與注水時間的函數(shù)關系的大致圖象是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,將△ABC沿直線MN翻折后,頂點C恰好落在AB邊上的點D處,已知MN∥AB,MC=6,NC= ,則四邊形MABN的面積是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若點A(﹣2,n)在x軸上,則點Bn+1,n1)在(

A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在今年“六一”期間,揚州市某中學計劃組織初一學生到上海研學,如果租用甲種客車2輛,乙種客車3輛,則可載180人,如果租用甲種客車3輛,乙種客車1輛,則可載165人.

(1)請問甲、乙兩種客車每輛分別能載客多少人?

(2)若該學校初一年級參加研學活動的師生共有303名,旅行社承諾每輛車安排一名導游,導游也需一個座位.旅行前,旅行社的一名導游由于有特殊情況,旅行社只能安排7名導游,為保證所租的每輛車均有一名導游,租車方案調(diào)整為:同時租65座、甲種客車和乙種客車的大小三種客車,出發(fā)時,所租的三種客車的座位恰好坐滿,請問旅行社的租車方案應如何安排?

查看答案和解析>>

同步練習冊答案