【題目】如圖,以直角三角形的直角頂點為原點,以所在直線為軸,軸建立平面直角坐標系,點滿足

(1)則點的坐標為__________;點的坐標為____________.

(2)直角三角形的面積為_________.

(3)已知坐標軸上有兩動點同時出發(fā),點從點出發(fā)沿軸負方向以1個單位長度每秒的速度勻速移動,點從點出發(fā)以2個單位長度每秒的速度沿軸正方向移動,點到達點整個運動隨之結束。的中點的坐標是,設運動時間為秒,問:是否存在這樣的使?若存在,請求出的值;若不存在,請說明理由.

【答案】1)(4,0),(0,8);(216;(3t=2

【解析】分析:(1)直接利用絕對值的性質結合二次根式的定義分析得出a,c的值,進而得出答案

2根據(jù)三角形面積公式計算即可;

3首先得出CP=t,OP=4-tOQ=2t,AQ=8-2t再表示出△DOP和△DOQ的面積,進而得出等式求出答案.

詳解:(1+|c4|=0,c4=0,a2c=0,解得c=4,a=8,C4,0),A08).

故答案為:40),(08);

2直角三角形的面積=AO×OC=×8×4=16;

3存在由條件可知P點從C點運動到O點的時間為4,Q點從O點運動到A 點的時間為4,

∴當0t4,Q在線段AOP在線段OC,

由題意可得CP=tOP=4-t,OQ=2t,AQ=8-2t,D2,4),

SODP=SODQ,82t=2t,∴解得t=2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某商家到梧州市一茶廠購買茶葉,購買茶葉數(shù)量為x千克(x>0),總費用為y元,現(xiàn)有兩種購買方式. 方式一:若商家贊助廠家建設費11500元,則所購茶葉價格為130元/千克;(總費用=贊助廠家建設費+購買茶葉費)
方式二:總費用y(元)與購買茶葉數(shù)量x(千克)滿足下列關系式:y=
請回答下面問題:
(1)寫出購買方式一的y與x的函數(shù)關系式;
(2)如果購買茶葉超過150千克,說明選擇哪種方式購買更省錢;
(3)甲商家采用方式一購買,乙商家采用方式二購買,兩商家共購買茶葉400千克,總費用共計74600元,求乙商家購買茶葉多少千克?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地出租車計費方法如圖,x(km)表示行駛里程,y(元)表示車費,請根據(jù)圖象解答下列問題:
(1)該地出租車的起步價是元;
(2)當x>2時,求y與x之間的函數(shù)關系式;
(3)若某乘客有一次乘出租車的里程為18km,則這位乘客需付出租車車費多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某城市規(guī)定:出租車起步價允許行駛的最遠路程為3千米,超過3千米的部分按每千米另行收費,甲說:我乘這種出租車走了11千米,付了17;乙說:我乘這種出租車走了23千米,付了35.請你算一算這種出租車的起步價是多少元?以及超過3千米后,每千米的車費是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中, ;向右平移5個單位向上平移4個單位之后得到的圖象

(1)兩點的坐標分別為____________________________.

(2)作出平移之后的圖形.

(3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】5x = 4x –7,那么5x– __________= –7,變形依據(jù)是 ____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1個單位長度的小正方形組成的網格中,小正方形的頂點叫做格點,ABC叫做格點三角形(三角形的頂點都是格點),請按要求完成:

(1)先將ABC豎直向上平移6個單位,再水平向右平移3個單位得到A1B1C1請在網格中畫出A1B1C1;

(2)將A1B1C1繞點B1順時針旋轉90°,得到A2B1C2,請在網格中畫出A2B1C2;

(3)ABC沿直線B1 C2翻折,得到A3B3C,請在網格中畫出A3B3C;

(4)線段BC沿著由BB1的方向平移至線段B1C1,求線段BC掃過的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將點Q2, -1)向右平移2個單位,再向下平移3個單位得到點R的坐標是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,E、F、G、H依次是各邊中點,O是四邊形ABCD內一點, 若四邊形AEOH、四邊形BFOE、四邊形CGOF的面積分別為7、9、10,則四邊形DHOG的面積為( )

A. 7 B. 8 C. 9 D. 10

查看答案和解析>>

同步練習冊答案