【題目】在四邊形 ABCD 中,對(duì)角線 AC、BD 相交于點(diǎn) O,過(guò)點(diǎn) O 的兩條直線分別交邊 AB、CD、AD、BC 于點(diǎn) E、F、G、H.

(感知)如圖,若四邊形 ABCD 是正方形,且 AG=BE=CH=DF,則 S 四邊形AEOG S 正方形 ABCD

(拓展如圖②,若四邊形 ABCD 是矩形, S 四邊形 AEOGS 矩形 ABCD,設(shè) AB=a, AD=b,BE=m, AG 的長(zhǎng)用含 a、b、m 的代數(shù)式表示);

(探究)如圖,若四邊形 ABCD 是平行四邊形,且 AB=3,AD=5,BE=1, 試確定 F、G、H 的位置,使直線 EF、GH 把四邊形 ABCD 的面積四等分.

【答案】【感知】;【拓展】AG=;【探究】當(dāng) AG=CH=,BE=DF=1 時(shí),直線 EF、GH 把四邊形 ABCD 的面積四等分.

【解析】

感知如圖①,根據(jù)正方形的性質(zhì)和全等三角形的性質(zhì)即可得到結(jié)論;

拓展如圖②,過(guò)OONADN,OMABM,根據(jù)圖形的面積得到mb= AGa,于是得到結(jié)論;

探究如圖③,過(guò)OKLAB,PQAD,則KL=2OK,PQ=2OQ,根據(jù)平行四邊形的面積公式得到,根據(jù)三角形的面積公式列方程即可得到結(jié)論.

感知如圖①,

∵四邊形ABCD是正方形,

∴∠OAG=OBE=45°,OA=OB,

在△AOG與△BOE中,,

∴△AOG≌△BOE,

S四邊形AEOG=SAOBS正方形 ABCD;

故答案為:;

拓展如圖②,過(guò)OONAD N,OMABM,

SAOBS矩形ABCD,S四邊形AEOGS矩形ABCD

SAOB=S四邊形AEOG,

SAOB=SBOE+SAOE,S四邊形AEOG=SAOG+SAOE

SBOE=SAOG,

SBOEBEOM=b=mb,SAOGAGON=AGa=AGa,

mb=AGa,

AG=

探究如圖③,過(guò)OKLAB,PQAD,

KL=2OK,PQ=2OQ,

S平行四邊形ABCD=ABKL=ADPQ,

3×2OK=5×2OQ,

,

SAOBS平行四邊形ABCD,S四邊形AEOGS平行四邊形ABCD,

SAOB=S四邊形AEOG

SBOE=SAOG,

SBOEBEOK=×1×OK,SAOGAGOQ,

×1×OK=AGOQ,

=AG=

∴當(dāng)AG=CH=,BE=DF=1時(shí),直線EF、GH把四邊形ABCD的面積四等分.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為調(diào)查達(dá)州市民上班時(shí)最常用的交通工具的情況,隨機(jī)抽取了部分市民進(jìn)行調(diào)查,要求被調(diào)查者從“A:自行車,B:電動(dòng)車,C:公交車,D:家庭汽車,E:其他五個(gè)選項(xiàng)中選擇最常用的一項(xiàng).將所有調(diào)查結(jié)果整理后繪制成如下不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,請(qǐng)結(jié)合統(tǒng)計(jì)圖回答下列問(wèn)題.

(1)本次調(diào)查中,一共調(diào)查了   名市民;扇形統(tǒng)計(jì)圖中,B項(xiàng)對(duì)應(yīng)的扇形圓心角是   度;補(bǔ)全條形統(tǒng)計(jì)圖;

(2)若甲、乙兩人上班時(shí)從A,B,C,D四種交通工具中隨機(jī)選擇一種,請(qǐng)用列表法或畫樹狀圖的方法,求出甲、乙兩人恰好選擇同一種交通工具上班的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一小球沿與地面成一定角度的方向飛出,小球的飛行路線是一條拋物線,如果不考慮空氣阻力,小球的飛行高度y(單位:m)與飛行時(shí)間x(單位:s)之間具有函數(shù)關(guān)系y=﹣5x2+20x,請(qǐng)根據(jù)要求解答下列問(wèn)題:

(1)在飛行過(guò)程中,當(dāng)小球的飛行高度為15m時(shí),飛行時(shí)間是多少?

(2)在飛行過(guò)程中,小球從飛出到落地所用時(shí)間是多少?

(3)在飛行過(guò)程中,小球飛行高度何時(shí)最大?最大高度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與實(shí)踐:?jiǎn)栴}情境:在一次綜合實(shí)踐活動(dòng)課上,同學(xué)們以菱形為對(duì)象,研究菱形旋轉(zhuǎn)中的問(wèn)題:已知,在菱形中,為對(duì)角線,,,將菱形繞頂點(diǎn)順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為(單位.旋轉(zhuǎn)后的菱形為.在旋轉(zhuǎn)探究活動(dòng)中提出下列問(wèn)題,請(qǐng)你幫他們解決.

1)如圖1,若旋轉(zhuǎn)角,相交于點(diǎn),相交于點(diǎn).請(qǐng)說(shuō)明線段的數(shù)量關(guān)系;

2)如圖2,連接,菱形旋轉(zhuǎn)的過(guò)程中,當(dāng)互相垂直時(shí),的長(zhǎng)為______;

3)如圖3,若旋轉(zhuǎn)角為時(shí),分別連接,,過(guò)點(diǎn)分別作,,連接,菱形旋轉(zhuǎn)的過(guò)程中,發(fā)現(xiàn)在中存在長(zhǎng)度不變的線段,請(qǐng)求出長(zhǎng)度;

操作探究:(4)如圖4,在(3)的條件下,請(qǐng)判斷以,三條線段長(zhǎng)度為邊的三角形是什么特殊三角形,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,CD是邊AB上的高,且

1)求證:△ACD∽△CBD;

2)求∠ACB的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙OABC的內(nèi)切圓,切點(diǎn)分別相為點(diǎn)DE、F,設(shè)ABC的面積、周長(zhǎng)分別為S、l,⊙O的半徑為r,則下列等式:

①∠AED+∠BFE+∠CDF180°;②S=l r;③2EDF=∠A+∠C;④2(ADCFBE)l,其中成立的是( )

A.①②③④B.②③④C.①③④D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,以AB為直徑的⊙O分別與BC,AC相交于點(diǎn)D,E,BD=CD,過(guò)點(diǎn)D作⊙O的切線交邊AC于點(diǎn)F.

(1)求證:DF⊥AC;

(2)若⊙O的半徑為5,∠CDF=30°,求的長(zhǎng)(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若拋物線的頂點(diǎn)坐標(biāo)是,并且拋物線與軸兩交點(diǎn)間的距離為8,試求該拋物線的關(guān)系式,并求出這條拋物線上縱坐標(biāo)為10的點(diǎn)的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在梯形ABCD中,ABCD,BCCD,ADBD,EAB中點(diǎn).

1)求證:四邊形BCDE是菱形.

2)若AD6,BD8,求四邊形BCDE的周長(zhǎng)和面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案