【題目】為調(diào)查達州市民上班時最常用的交通工具的情況,隨機抽取了部分市民進行調(diào)查,要求被調(diào)查者從“A:自行車,B:電動車,C:公交車,D:家庭汽車,E:其他”五個選項中選擇最常用的一項.將所有調(diào)查結(jié)果整理后繪制成如下不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖,請結(jié)合統(tǒng)計圖回答下列問題.
(1)本次調(diào)查中,一共調(diào)查了 名市民;扇形統(tǒng)計圖中,B項對應(yīng)的扇形圓心角是 度;補全條形統(tǒng)計圖;
(2)若甲、乙兩人上班時從A,B,C,D四種交通工具中隨機選擇一種,請用列表法或畫樹狀圖的方法,求出甲、乙兩人恰好選擇同一種交通工具上班的概率.
【答案】(1)2000、54;補圖見解析;(2)
【解析】(1)根據(jù)D組的人數(shù)以及百分比,即可得到被調(diào)查的人數(shù),進而得出C組的人數(shù),再根據(jù)扇形圓心角的度數(shù)=部分占總體的百分比×360°進行計算即可;
(2)根據(jù)甲、乙兩人上班時從A、B、C、D四種交通工具中隨機選擇一種畫樹狀圖或列表,即可運用概率公式得到甲、乙兩人恰好選擇同一種交通工具上班的概率.
(1)本次調(diào)查的總?cè)藬?shù)為500÷25%=2000人,扇形統(tǒng)計圖中,B項對應(yīng)的扇形圓心角是360°×=54°,
C選項的人數(shù)為2000-(100+300+500+300)=800,
補全條形圖如下:
(2)列表如下:
A | B | C | D | |
A | (A,A) | (B,A) | (C,A) | (D,A) |
B | (A,B) | (B,B) | (C,B) | (D,B) |
C | (A,C) | (B,C) | (C,C) | (D,C) |
D | (A,D) | (B,D) | (C,D) | (D,D) |
由表可知共有16種等可能結(jié)果,其中甲、乙兩人恰好選擇同一種交通工具上班的結(jié)果有4種,
所以甲、乙兩人恰好選擇同一種交通工具上班的概率為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“十一”黃金周期間,某市在天中外出旅游的人數(shù)變化如下表(正數(shù)表示比前一天多的人數(shù),負數(shù)表示比前一天少的人數(shù))
日期 | 日 | 日 | 日 | 日 | 日 | 日 | 日 |
人數(shù)變化(萬人) |
(1)若月日外出旅游人數(shù)為,那么月日外出旅游的人數(shù)是多少?
(2)請判斷七天內(nèi)外出旅游人數(shù)最多的是哪天?最少的是哪天?它們相差多少?
(3)如果最多一天有出游人數(shù)萬人,那么若月日外出旅游的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市共有一中、二中、三中等3所高中,有一天所有高二學(xué)生參加了一次數(shù)學(xué)測試,閱卷后老師們對第10題進行了分析,把每個學(xué)生的解答情況歸結(jié)為下列四類情況之一:A(概念錯誤),B(計算錯誤),C(基本正確),D(完全正確).各校出現(xiàn)這四類情況的人數(shù)占本校高二學(xué)生數(shù)的百分比見下面的條形統(tǒng)計圖:
已知一中高二學(xué)生有400名,這三所學(xué)校之問高二學(xué)生人數(shù)的比例見扇形統(tǒng)計圖.
(1)求全市高二學(xué)生總數(shù);
(2)求全市解答完全正確的高二學(xué)生數(shù)占高二學(xué)生總數(shù)的百分比;
(3)請你對三中高二數(shù)學(xué)老師提一個值得關(guān)注的教學(xué)建議,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于點A(﹣1,0),與y軸的交點B在(0,2)與(0,3)之間(不包括這兩點),對稱軸為直線x=2.下列結(jié)論:abc<0;②9a+3b+c>0;③若點M(,y1),點N(,y2)是函數(shù)圖象上的兩點,則y1<y2;④﹣<a<﹣.其中正確結(jié)論有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為3的正方形,點E在邊AD所在的直線上,連接CE,以CE為邊,作正方形CEFG(點C、E、F、G按逆時針排列),連接BF.
(1)如圖1,當(dāng)點E與點D重合時,BF的長為 ;
(2)如圖2,當(dāng)點E在線段AD上時,若AE=1,求BF的長;(提示:過點F作BC的垂線,交BC的延長線于點M,交AD的延長線于點N.)
(3)當(dāng)點E在直線AD上時,若AE=4,請直接寫出BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請把下列證明過程補充完整.已知:如圖,B、C、E三點在同一直線上,A、F、E三點在同一直線上,∠1=∠2=∠E,∠3=∠4.求證:AB∥CD.
證明:∵∠2=∠E(已知)
∴ ∥BC( )
∴∠3=∠ ( )
∵∠3=∠4(已知)
∴∠4=∠ ( )
∵∠1=∠2(已知)
∴∠1+∠CAF=∠2+∠CAF ,即∠BAF=∠
∴∠4=∠ (等量代換)
∴ ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓的周長為4個單位長度,在圓的四等分點處標(biāo)上字母,先將圓周上的字母對應(yīng)的點與數(shù)軸的數(shù)字0對應(yīng)的點重合,若將圓沿著數(shù)軸向左滾動,那么數(shù)軸上的-2019所對應(yīng)的的點將與圓周上字母__________所對應(yīng)的的點重合.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小澤和小超分別用擲A、B兩枚骰子的方法來確定P(x,y)的位置,她們規(guī)定:小澤擲得的點數(shù)為x,小超擲得的點數(shù)為,那么,她們各擲一次所確定的點落在已知直線y=-2x+6上的概率為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠MBC和∠NCB是△ABC的外角,點O是∠MBC和∠NCB的平分線的交點,點O叫做△ABC的旁心.
(1)已知∠A=100°,那么∠BOC等于多少度;
(2)猜想∠BOC與∠A有什么數(shù)量關(guān)系?并證明你的猜想.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com