【題目】已知二次函數(shù)y=﹣x2﹣2x+3.
(1)把函數(shù)關(guān)系式配成頂點(diǎn)式并求出圖象的頂點(diǎn)坐標(biāo)和對(duì)稱軸.
(2)若圖象與x軸交點(diǎn)為A.B,與y軸交點(diǎn)為C,求A、B、C三點(diǎn)的坐標(biāo);
(3)在圖中畫出圖象.并求出△ABC面積.
【答案】(1)y=﹣(x+1)2+4(2)拋物線與 y 軸的交點(diǎn) C(0,3)(3)6
【解析】
(1)根據(jù)配方法步驟將解析式配成頂點(diǎn)式可得;
(2)求出y=0時(shí)x的軸可得點(diǎn)A、B的坐標(biāo),求出x=0時(shí)y的值可得點(diǎn)C的坐標(biāo);
(3)根據(jù)拋物線的頂點(diǎn)坐標(biāo)及其與坐標(biāo)軸的交點(diǎn)可畫出拋物線的圖象,再由三角形的面積公式可得答案.
(1)∵y=﹣x2﹣2x+3
=﹣(x2+2x+1﹣1)+3
=﹣(x+1)2+4,
∴拋物線的頂點(diǎn)坐標(biāo)為(﹣1,4),對(duì)稱軸為直線 x=﹣1;
(2)當(dāng) y=0 時(shí),﹣x2﹣2x+3=0, 解得:x=1 或 x=﹣3,
∴拋物線與 x 軸的交點(diǎn) A(﹣3,0)、B(1,0),當(dāng) x=0 時(shí),y=3,
∴拋物線與 y 軸的交點(diǎn) C(0,3);
(3)其函數(shù)圖象如下圖所示:
S△ABC= AByC= ×4×3=6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A(﹣3,1),B(﹣1,﹣1),C(2,2).
(1)畫出△ABC關(guān)于y軸對(duì)稱的△A1B1C1,并寫出點(diǎn)A1,B1,C1的坐標(biāo);
(2)畫出△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°所得到的△A2B2C2,并求出S.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中, ,,,直線l從與AC重合的位置開始以每秒個(gè)單位的速度沿CB方向平行移動(dòng),且分別與CB,AB邊交于D,E兩點(diǎn),動(dòng)點(diǎn)F從A開始沿折線ACCBBA運(yùn)動(dòng),點(diǎn)F在AC,CB,BA邊上運(yùn)動(dòng)的速度分別為每秒3,4,5個(gè)單位,點(diǎn)F與直線l同時(shí)出發(fā),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)點(diǎn)F第一次回到點(diǎn)A時(shí),點(diǎn)F與直線 l同時(shí)停止運(yùn)動(dòng).運(yùn)動(dòng)過程中,作點(diǎn)F關(guān)于直線DE的對(duì)稱點(diǎn),記為點(diǎn),若形成的四邊形 為菱形,則所有滿足條件的之和為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,E是AC邊上的一點(diǎn),且AE=AB,∠BAC=2∠CBE,以AB為直徑作⊙O交AC于點(diǎn)D,交BE于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)若AB=8,BC=6,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=-x+4的圖象與反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象交于A(1,a),B兩點(diǎn).
(1)求反比例函數(shù)的表達(dá)式及點(diǎn)B的坐標(biāo);
(2)結(jié)合圖象直接寫出不等式-x+4>的解集
(3)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo)及△PAB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)的某種產(chǎn)品每件成本為40元,經(jīng)市場(chǎng)調(diào)查整理出如下信息:
①該產(chǎn)品90天內(nèi)日銷售量(m件)與時(shí)間(第x天)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:
時(shí)間(第x天) | 1 | 3 | 6 | 10 | … |
日銷售量(m件) | 198 | 194 | 188 | 180 | … |
②該產(chǎn)品90天內(nèi)每天的銷售價(jià)格與時(shí)間(第x天)的關(guān)系如下表:
時(shí)間(第x天) | 1≤x<50 | 50≤x≤90 |
銷售價(jià)格(元/件) | x+60 | 100 |
(1)求m關(guān)于x的一次函數(shù)表達(dá)式;
(2)設(shè)銷售該產(chǎn)品每天利潤(rùn)為y元,請(qǐng)寫出y關(guān)于x的函數(shù)表達(dá)式,并求出在90天內(nèi)該產(chǎn)品哪天的銷售利潤(rùn)最大?最大利潤(rùn)是多少?【提示:每天銷售利潤(rùn)=日銷售量×(每件銷售價(jià)格-每件成本)】
(3)在該產(chǎn)品銷售的過程中,共有多少天銷售利潤(rùn)不低于5400元,請(qǐng)直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣4x+4與x軸、y軸分別交于A、B兩點(diǎn),以AB為邊在第一象限作正方形ABCD,將正方形ABCD沿x軸負(fù)方向平移a個(gè)單位長(zhǎng)度后,點(diǎn)C恰好落在雙曲線在第一象限的分支上,則a的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一段拋物線y=﹣x2+4(﹣2≤x≤2)為C1,與x軸交于A0,A1兩點(diǎn),頂點(diǎn)為D1;將C1繞點(diǎn)A1旋轉(zhuǎn)180°得到C2,頂點(diǎn)為D2;C1與C2組成一個(gè)新的圖象,垂直于y軸的直線l與新圖象交于點(diǎn)P1(x1,y1),P2(x2,y2),與線段D1D2交于點(diǎn)P3(x3,y3),設(shè)x1,x2,x3均為正數(shù),t=x1+x2+x3,則t的取值范圍是( 。
A. 6<t≤8 B. 6≤t≤8 C. 10<t≤12 D. 10≤t≤12
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com