【題目】已知二次函數(shù)y=﹣x2﹣2x+3.

(1)把函數(shù)關(guān)系式配成頂點(diǎn)式并求出圖象的頂點(diǎn)坐標(biāo)和對(duì)稱軸.

(2)若圖象與x軸交點(diǎn)為A.B,與y軸交點(diǎn)為C,求A、B、C三點(diǎn)的坐標(biāo);

(3)在圖中畫出圖象.并求出△ABC面積.

【答案】(1)y=﹣(x+1)2+4(2)拋物線與 y 軸的交點(diǎn) C(0,3)(3)6

【解析】

1)根據(jù)配方法步驟將解析式配成頂點(diǎn)式可得;
2)求出y=0時(shí)x的軸可得點(diǎn)A、B的坐標(biāo),求出x=0時(shí)y的值可得點(diǎn)C的坐標(biāo);
3)根據(jù)拋物線的頂點(diǎn)坐標(biāo)及其與坐標(biāo)軸的交點(diǎn)可畫出拋物線的圖象,再由三角形的面積公式可得答案.

(1)∵y=﹣x2﹣2x+3

=﹣(x2+2x+1﹣1)+3

=﹣(x+1)2+4,

∴拋物線的頂點(diǎn)坐標(biāo)為(﹣1,4),對(duì)稱軸為直線 x=﹣1;

(2)當(dāng) y=0 時(shí),﹣x2﹣2x+3=0, 解得:x=1 或 x=﹣3,

∴拋物線與 x 軸的交點(diǎn) A(﹣3,0)、B(1,0),當(dāng) x=0 時(shí),y=3,

∴拋物線與 y 軸的交點(diǎn) C(0,3);

(3)其函數(shù)圖象如下圖所示:

SABCAByC×4×3=6.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A(﹣3,1),B(﹣1,﹣1),C2,2).

1)畫出ABC關(guān)于y軸對(duì)稱的A1B1C1,并寫出點(diǎn)A1,B1C1的坐標(biāo);

2)畫出ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°所得到的A2B2C2,并求出S

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC, ,,直線l從與AC重合的位置開始以每秒個(gè)單位的速度沿CB方向平行移動(dòng),且分別與CB,AB邊交于D,E兩點(diǎn),動(dòng)點(diǎn)FA開始沿折線ACCBBA運(yùn)動(dòng),點(diǎn)FACCB,BA邊上運(yùn)動(dòng)的速度分別為每秒3,4,5個(gè)單位,點(diǎn)F與直線l同時(shí)出發(fā),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)點(diǎn)F第一次回到點(diǎn)A時(shí),點(diǎn)F與直線 l同時(shí)停止運(yùn)動(dòng).運(yùn)動(dòng)過程中,作點(diǎn)F關(guān)于直線DE的對(duì)稱點(diǎn),記為點(diǎn),若形成的四邊形 為菱形,則所有滿足條件的之和為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,EAC邊上的一點(diǎn),且AE=AB,∠BAC=2∠CBE,以AB為直徑作⊙OAC于點(diǎn)D,交BE于點(diǎn)F

1)求證:BC⊙O的切線;

2)若AB=8BC=6,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=-x+4的圖象與反比例函數(shù)y=k為常數(shù),且k0)的圖象交于A1,a),B兩點(diǎn).

1)求反比例函數(shù)的表達(dá)式及點(diǎn)B的坐標(biāo);

2)結(jié)合圖象直接寫出不等式-x+4的解集

3)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo)及△PAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)的某種產(chǎn)品每件成本為40元,經(jīng)市場(chǎng)調(diào)查整理出如下信息:

①該產(chǎn)品90天內(nèi)日銷售量(m件)與時(shí)間(第x天)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:

時(shí)間(第x天)

1

3

6

10

日銷售量(m件)

198

194

188

180

②該產(chǎn)品90天內(nèi)每天的銷售價(jià)格與時(shí)間(第x天)的關(guān)系如下表:

時(shí)間(第x天)

1≤x<50

50≤x≤90

銷售價(jià)格(元/件)

x+60

100

(1)求m關(guān)于x的一次函數(shù)表達(dá)式;

(2)設(shè)銷售該產(chǎn)品每天利潤(rùn)為y元,請(qǐng)寫出y關(guān)于x的函數(shù)表達(dá)式,并求出在90天內(nèi)該產(chǎn)品哪天的銷售利潤(rùn)最大?最大利潤(rùn)是多少?【提示:每天銷售利潤(rùn)=日銷售量×(每件銷售價(jià)格-每件成本)】

(3)在該產(chǎn)品銷售的過程中,共有多少天銷售利潤(rùn)不低于5400元,請(qǐng)直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣4x+4與x軸、y軸分別交于A、B兩點(diǎn),以AB為邊在第一象限作正方形ABCD,將正方形ABCD沿x軸負(fù)方向平移a個(gè)單位長(zhǎng)度后,點(diǎn)C恰好落在雙曲線在第一象限的分支上,則a的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)yaxaya≠0)在同一直角坐標(biāo)系中的圖象可能是( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一段拋物線y=﹣x2+4(﹣2≤x≤2)為C1,與x軸交于A0,A1兩點(diǎn),頂點(diǎn)為D1;將C1繞點(diǎn)A1旋轉(zhuǎn)180°得到C2,頂點(diǎn)為D2;C1C2組成一個(gè)新的圖象,垂直于y軸的直線l與新圖象交于點(diǎn)P1(x1,y1),P2(x2,y2),與線段D1D2交于點(diǎn)P3(x3,y3),設(shè)x1,x2,x3均為正數(shù),t=x1+x2+x3,則t的取值范圍是( 。

A. 6<t≤8 B. 6≤t≤8 C. 10<t≤12 D. 10≤t≤12

查看答案和解析>>

同步練習(xí)冊(cè)答案