【題目】如圖,方格紙中小正方形的邊長為1,△ABC的三個頂點都在小正方形的格點上,求:
(1)△ABC的面積;
(2)邊AC的長;
(3)點B到AC邊的距離.

【答案】
(1)解:SABC=3×3﹣( ×3×1+ ×2×1+ ×2×3)=
(2)解:AC= =
(3)解:設點B到AC邊的距離為h,則SABC= ×AC×h= ,

解得:h=


【解析】(1)利用三角形所在的正方形面積減三個小直角三角形的面積即可求出;(2)利用勾股定理即可求出AC的長;(3)求出AC,則點B到AC邊的距離即為AC邊上的高,利用面積定值即可求出.
【考點精析】本題主要考查了勾股定理的概念的相關知識點,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】解方程:
(1)8(x+1)2﹣50=0
(2) (5x+3)3+32=0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB∥CD,直線MN分別交AB、CD于點E,F(xiàn),EG平分∠AEF,EG⊥FG于點G,若∠BEM=60°,則∠CFG=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

(1)(a2)3·(a3)2÷(a2)5;

(2)(a-b+c)(a+b-c).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的方程x2+kx+3=0的一個根是 – 1,則k=_______________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,水庫大壩截面的迎水坡坡比(DE與AE的長度之比)為5:3,背水坡坡比為1:2,大壩高DE=30m,壩頂寬CD=10m,求大壩的截面面積和周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一只跳蚤在第一象限及x軸、y軸上跳動,在第一秒鐘,它從原點跳動到(0,1),然后接著按圖中箭頭所示方向跳動,即(0,0)→(0,1)→(1,1)→(1,0)…,且每秒跳動一個單位,那么第35秒時跳蚤所在位置的坐標是( )

A.(4,0)
B.(5,0)
C.(0,5)
D.(5,5)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,每個小正方形的邊長都為1,△ABC在網(wǎng)格中的位置如圖所示,△ABC的三個頂點都在格點上.
(1)寫出△ABC三個頂點的坐標;
(2)將點A,B,C的橫坐標都乘以﹣1,縱坐標不變,分別得到點A1 , B1 , C1 , 在圖中找到點A1 , B1 , C1 , 并順次連接A1 , B1 , C1得到△A1B1C1 , 則這兩個三角形關于對稱;
(3)若以點A,C,P為頂點的三角形與△ABC全等,直接寫出所有符合條件的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了了解某中學初三800名學生的視力情況,從中隨機抽取了30名學生進行調查,在此次調查中,樣本容量為( 。

A800 B30 C800名學生的視力 D30名學生的視力

查看答案和解析>>

同步練習冊答案