【題目】如圖,點(diǎn)CD在線段AB上,PCD是等邊三角形,且CD2ADBC

1)求證:APD∽△PBC;

2)求∠APB的度數(shù).

【答案】1)見(jiàn)解析;(2120°

【解析】

1CD2ADBC可得ADPCPDBC,又由PCD是等邊三角形,所以可求出∠ADP=∠BCP120°,進(jìn)而證明ACP∽△PDB;

2)由APD∽△PBC,可得∠APD=∠B,則可求得∠APB的大小.

1)證明:∵△PCD是等邊三角形,

PDPCDC,∠PDC=∠PCD60°,

∴∠ADP=∠BCP120°,

CD2ADBC,

ADPCPDBC,

∴△APD∽△PBC

2)∵△APD∽△PBC,

∴∠APD=∠B,

∵∠B+BPC60°,

∴∠APD+BPC60°,

∴∠APB60°+DPC120°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,D為邊BC上一點(diǎn),以AB,BD為鄰邊作ABDE,連接AD,EC.

(1)求證:△ADC≌△ECD;

(2)若BD=CD,求證:四邊形ADCE是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=ax+b與y=ax2﹣bx的圖象可能是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)E是矩形ABCD邊AD上的一個(gè)動(dòng)點(diǎn),且與點(diǎn)A、點(diǎn)D不重合,連結(jié)BE、CE,過(guò)點(diǎn)B作BFCE,過(guò)點(diǎn)C作CFBE,交點(diǎn)為F點(diǎn),連接AF、DF分別交BC于點(diǎn)G、H,則下列結(jié)論錯(cuò)誤的是( 。

A. GH=BC B. SBGF+SCHF=SBCF

C. S四邊形BFCE=ABAD D. 當(dāng)點(diǎn)E為AD中點(diǎn)時(shí),四邊形BECF為菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,是邊上任意一點(diǎn)(點(diǎn)與點(diǎn)不重合),以為一直角邊在的外部作,,連接

1)在圖中,若,,現(xiàn)將圖中的繞著點(diǎn)順時(shí)針旋轉(zhuǎn)銳角,得到圖,那么線段,之間有怎樣的關(guān)系,寫出結(jié)論,并說(shuō)明理由;

2)在圖中,若,,,現(xiàn)將圖中的繞著點(diǎn)順時(shí)針旋轉(zhuǎn)銳角,得到圖,連接、

①求證:;

②計(jì)算:的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一種雪球夾的簡(jiǎn)化結(jié)構(gòu)圖,其通過(guò)一個(gè)固定夾體和一個(gè)活動(dòng)夾體的配合巧妙地完成夾雪、投雪的操作,不需人手直接接觸雪,使用方便,深受小朋友的喜愛(ài).當(dāng)雪球夾閉合時(shí),測(cè)得∠AOB30°,OAOB14 cm,則此款雪球夾制作的雪球的直徑AB的長(zhǎng)度為________ cm(結(jié)果保留一位小數(shù).參考數(shù)據(jù):sin15°≈026cos15°≈097,tan15°≈027)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與實(shí)踐:折紙中的數(shù)學(xué)

問(wèn)題背景

在數(shù)學(xué)活動(dòng)課上,老師首先將平行四邊形紙片ABCD按如圖①所示方式折疊,使點(diǎn)C與點(diǎn)A重合,點(diǎn)D落到D′處,折痕為EF.這時(shí)同學(xué)們很快證得:△AEF是等腰三角形.接下來(lái)各學(xué)習(xí)小組也動(dòng)手操作起來(lái),請(qǐng)你解決他們提出的問(wèn)題.

操作發(fā)現(xiàn)

(1) “爭(zhēng)先”小組將矩形紙片ABCD按上述方式折疊,如圖②,發(fā)現(xiàn)重疊部分△AEF恰好是等邊三角形,求矩形ABCD的長(zhǎng)、寬之比是多少?

實(shí)踐探究

(2)“勵(lì)志”小組將矩形紙片ABCD沿EF折疊,如圖③,使B點(diǎn)落在AD邊上的B′處;沿BG折疊,使D點(diǎn)落在D′處,且BD′過(guò)F點(diǎn).試探究四邊形EFGB′是什么特殊四邊形?

(3)再探究:在圖③中連接BB′,試判斷并證明△BBG的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,l1l2l3l4l5,且l1,l2,l3l4,l5中相鄰兩條直線之間的距離相等,△ABC的頂點(diǎn)AB,C分別在l1l3,l5上,ABl2于點(diǎn)DBCl4于點(diǎn)E,ACl2于點(diǎn)F,若△DEF的面積是1,則△ABC的面積是(  )

A.3. 5B.4C.4.5D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,BC6E,F分別是AB,AC的中點(diǎn),動(dòng)點(diǎn)P在射線EF上,BPCE于點(diǎn)D,∠CBP的平分線交CE于點(diǎn)Q,當(dāng)CQCE時(shí),EP+BP的值為( 。

A.6B.9C.12D.18

查看答案和解析>>

同步練習(xí)冊(cè)答案