【題目】△ABC 在平面直角坐標(biāo)系中的位置如圖所示, 其中每個小正方形的邊長為1個單位長度.
(1)△ABC 關(guān)于原點(diǎn) O 的中心對稱圖形為△A1B1C1,寫出點(diǎn) A 的對應(yīng)點(diǎn) A1 的坐標(biāo) ;
(2)畫出將△ABC 繞點(diǎn)O 順時針旋轉(zhuǎn) 90°得到的△A2B2C2;
(3)若 P(a,b)為△ABC 邊上一點(diǎn),則在△A2B2C2 中,點(diǎn) P 對應(yīng)的點(diǎn) Q 的坐標(biāo)為 .
(4)請直接寫出:以 A、B、C 為頂點(diǎn)的平行四邊形的第四個頂點(diǎn) D 的坐標(biāo) .
【答案】(1)點(diǎn)A1的坐標(biāo)(2,-4);(2)詳見解析;(3) (b,-a).(4)點(diǎn)D的坐標(biāo)(-3,5)、(-1,3)、(-5,-1)
【解析】
(1)找出點(diǎn)A、B、C關(guān)于原點(diǎn)O的對稱點(diǎn)的位置,然后順次連接,寫出坐標(biāo)即可;
(2)根據(jù)網(wǎng)格結(jié)構(gòu)以及平面直角坐標(biāo)系的特點(diǎn),找出點(diǎn)A、B、C繞點(diǎn)O順時針旋轉(zhuǎn)90°的對應(yīng)點(diǎn)的位置,然后順次連接;
(3)(4)由旋轉(zhuǎn)的性質(zhì)結(jié)合圖形,再根據(jù)平面直角坐標(biāo)系的特點(diǎn)寫出點(diǎn)的坐標(biāo)即可.
(1)如圖:點(diǎn)A1的坐標(biāo)(2,-4);
(2)如圖:
(3)若P(a,b)為△ABC邊上一點(diǎn),則在△A2B2C2中,點(diǎn)P對應(yīng)的點(diǎn)Q的坐標(biāo)為
(b,-a).
(4)請直接寫出:以A、B、C為頂點(diǎn)的平行四邊形的第四個頂點(diǎn)D的坐標(biāo)(-3,5)或(-1,3)或(-5,-1)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在ABCD中,AB=13,BC=50,BC邊上的高為12.點(diǎn)P從點(diǎn)B出發(fā),沿B﹣A﹣D﹣A運(yùn)動,沿B﹣A運(yùn)動時的速度為每秒13個單位長度,沿A﹣D﹣A運(yùn)動時的速度為每秒8個單位長度.點(diǎn)Q從點(diǎn) B出發(fā)沿BC方向運(yùn)動,速度為每秒5個單位長度.P、Q兩點(diǎn)同時出發(fā),當(dāng)點(diǎn)Q到達(dá)點(diǎn)C時,P、Q兩點(diǎn)同時停止運(yùn)動.設(shè)點(diǎn)P的運(yùn)動時間為t(秒).連結(jié)PQ.
(1)當(dāng)點(diǎn)P沿A﹣D﹣A運(yùn)動時,求AP的長(用含t的代數(shù)式表示).
(2)連結(jié)AQ,在點(diǎn)P沿B﹣A﹣D運(yùn)動過程中,當(dāng)點(diǎn)P與點(diǎn)B、點(diǎn)A不重合時,記△APQ的面積為S.求S與t之間的函數(shù)關(guān)系式.
(3)過點(diǎn)Q作QR∥AB,交AD于點(diǎn)R,連結(jié)BR,如圖②.在點(diǎn)P沿B﹣A﹣D運(yùn)動過程中,當(dāng)線段PQ掃過的圖形(陰影部分)被線段BR分成面積相等的兩部分時t的值.
(4)設(shè)點(diǎn)C、D關(guān)于直線PQ的對稱點(diǎn)分別為C′、D′,直接寫出C′D′∥BC時t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=ax+1的圖象經(jīng)過點(diǎn)M(2,3)、N(﹣3,b).
(1)求一次函數(shù)的解析式,并在圖中畫出函數(shù)圖象;
(2)求直線MN與x軸的交點(diǎn)坐標(biāo)及△MON的面積;
(3)根據(jù)圖象直接寫出:當(dāng)x取何值時,一次函數(shù)的值小于3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,以對角線BD為一邊構(gòu)造一個矩形BDEF,使得另一邊EF過原矩形的頂點(diǎn)C.
(1)設(shè)Rt△CBD的面積為S1,Rt△BFC的面積為S2,Rt△DCE的面積為S3,則S1__ __S2+S3;(填“>”“=”或“<”)
(2)寫出圖中的三對相似三角形,并選擇其中一對進(jìn)行證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了促進(jìn)學(xué)生多樣化發(fā)展,某校組織開展了社團(tuán)活動,分別設(shè)置了體育類、藝術(shù)類、文學(xué)類及其它類社團(tuán)(要求人人參與社團(tuán),每人只能選擇一項(xiàng)).為了解學(xué)生喜愛哪種社團(tuán)活動,學(xué)校做了一次抽樣調(diào)查.根據(jù)收集到的數(shù)據(jù),繪制成如下兩幅不完整的統(tǒng)計(jì)圖, 請根據(jù)圖中提供的信息,完成下列問題:
(1)此次共調(diào)查了 人;
(2)求文學(xué)社團(tuán)在扇形統(tǒng)計(jì)圖中所占圓心角為 度;
(3)請將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(4)若該校有 1500 名學(xué)生,請估計(jì)喜歡體育類社團(tuán)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是長為10m,傾斜角為37°的自動扶梯,平臺BD與大樓CE垂直,且與扶梯AB的長度相等,在B處測得大樓頂部C的仰角為65°,求大樓CE的高度(結(jié)果保留整數(shù)).
(參考數(shù)據(jù):sin37°≈,tan37°≈,sin65°≈,tan65°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖中是拋物線型拱橋,P處有一照明燈,水面OA寬4m,從O,A兩處觀測P處,仰角分別為α,β,tanα=,tanβ=,以O為原點(diǎn),OA所在直線為x軸建立直角坐標(biāo)系.
(1)求點(diǎn)P的坐標(biāo);
(2)水面上升1m,水面寬多少(取1.41,結(jié)果精確到0.1m)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知第一象限內(nèi)的點(diǎn)A在反比例函數(shù)y=的圖象上,第二象限內(nèi)的點(diǎn)B在反比例函數(shù)y=的圖象上,且OA⊥OB,cosA=,則k的值為( )
A. -3 B. -4 C. - D. -2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com