【題目】已知拋物線y=ax2+bx+c(b>a>0)與x軸最多有一個交點,現(xiàn)有以下四個結(jié)論:
①該拋物線的對稱軸在y軸左側(cè);
②關(guān)于x的方程ax2+bx+c+2=0無實數(shù)根;
③a﹣b+c≥0;
的最小值為3.
其中,正確結(jié)論的個數(shù)為( 。
A.1個
B.2個
C.3個
D.4個

【答案】D
【解析】解:∵b>a>0
∴﹣ <0,
所以①正確;
∵拋物線與x軸最多有一個交點,
∴b2﹣4ac≤0,
∴關(guān)于x的方程ax2+bx+c+2=0中,△=b2﹣4a(c+2)=b2﹣4ac﹣8a<0,
所以②正確;
∵a>0及拋物線與x軸最多有一個交點,
∴x取任何值時,y≥0
∴當(dāng)x=﹣1時,a﹣b+c≥0;
所以③正確;
當(dāng)x=﹣2時,4a﹣2b+c≥0
a+b+c≥3b﹣3a
a+b+c≥3(b﹣a)
≥3
所以④正確.
故選:D.
【考點精析】本題主要考查了二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系和二次函數(shù)的最值的相關(guān)知識點,需要掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關(guān):對稱軸為x=-b/2a;c表示拋物線與y軸的交點坐標(biāo):(0,c);如果自變量的取值范圍是全體實數(shù),那么函數(shù)在頂點處取得最大值(或最小值),即當(dāng)x=-b/2a時,y最值=(4ac-b2)/4a才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點A(﹣3,0),對稱軸為直線x=﹣1,給出四個結(jié)論:
①c>0;
②若點B(﹣ ,y1)、C(﹣ ,y2)為函數(shù)圖象上的兩點,則y1<y2;
③2a﹣b=0;
<0,
其中,正確結(jié)論的個數(shù)是(  )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電商銷售一款夏季時裝,進價40元/件,售價110元/件,每天銷售20件,每銷售一件需繳納電商平臺推廣費用a元(a>0).未來30天,這款時裝將開展“每天降價1元”的夏令促銷活動,即從第1天起每天的單價均比前一天降1元.通過市場調(diào)研發(fā)現(xiàn),該時裝單價每降1元,每天銷量增加4件.在這30天內(nèi),要使每天繳納電商平臺推廣費用后的利潤隨天數(shù)t(t為正整數(shù))的增大而增大,a的取值范圍應(yīng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將正方形紙片ABCD對折,使AB與CD重合,折痕為EF.如圖2,展開后再折疊一次,使點C與點E重合,折痕為GH,點B的對應(yīng)點為點M,EM交AB于N.若AD=2,則MN=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=150°,AC=4,tanB=

(1)求BC的長;
(2)利用此圖形求tan15°的值(精確到0.1,參考數(shù)據(jù): =1.4, =1.7, =2.2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,對角線AC為⊙O的直徑,過點C作AC的垂線交AD的延長線于點E,點F為CE的中點,連接DB,DC,DF.

(1)求∠CDE的度數(shù);
(2)求證:DF是⊙O的切線;
(3)若AC=2 DE,求tan∠ABD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形紙片ABCD中,AB=6,BC=10,點E在CD上,將△BCE沿BE折疊,點C恰落在邊AD上的點F處;點G在AF上,將△ABG沿BG折疊,點A恰落在線段BF上的點H處,有下列結(jié)論:
①∠EBG=45°;②△DEF∽△ABG;③SABG= SFGH;④AG+DF=FG.
其中正確的是 . (把所有正確結(jié)論的序號都選上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店以6元/千克的價格購進某種干果1140千克,并對其進行篩選分成甲級干果與乙級干果后同時開始銷售.這批干果銷售結(jié)束后,店主從銷售統(tǒng)計中發(fā)現(xiàn):甲級干果與乙級干果在銷售過程中每天都有銷量,且在同一天賣完;甲級干果從開始銷售至銷售的第x天的總銷量y1(千克)與x的關(guān)系為y1=﹣x2+40x;乙級干果從開始銷售至銷售的第t天的總銷量y2(千克)與t的關(guān)系為y2=at2+bt,且乙級干果的前三天的銷售量的情況見下表:

t

1

2

3

y2

21

44

69


(1)求a、b的值;
(2)若甲級干果與乙級干果分別以8元/千克和6元/千克的零售價出售,則賣完這批干果獲得的毛利潤是多少元?
(3)問從第幾天起乙級干果每天的銷量比甲級干果每天的銷量至少多6千克? (說明:毛利潤=銷售總金額﹣進貨總金額.這批干果進貨至賣完的過程中的損耗忽略不計)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠1=∠2,則不一定能使△ABD≌△ACD的條件是(
A.AB=AC
B.BD=CD
C.∠B=∠C
D.∠BDA=∠CDA

查看答案和解析>>

同步練習(xí)冊答案