【題目】如圖,四邊形ABCD內(nèi)接于⊙O,對角線AC為⊙O的直徑,過點C作AC的垂線交AD的延長線于點E,點F為CE的中點,連接DB,DC,DF.

(1)求∠CDE的度數(shù);
(2)求證:DF是⊙O的切線;
(3)若AC=2 DE,求tan∠ABD的值.

【答案】
(1)

解:∵對角線AC為⊙O的直徑,

∴∠ADC=90°,

∴∠EDC=90°


(2)

證明:連接DO,

∵∠EDC=90°,F(xiàn)是EC的中點,

∴DF=FC,

∴∠FDC=∠FCD,

∵OD=OC,

∴∠OCD=∠ODC,

∵∠OCF=90°,

∴∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,

∴DF是⊙O的切線;


(3)

解:如圖所示:

可得∠ABD=∠ACD,

∵∠E+∠DCE=90°,∠DCA+∠DCE=90°,

∴∠DCA=∠E,

又∵∠ADC=∠CDE=90°,

∴△CDE∽△ADC,

,

∴DC2=ADDE

∵AC=2 DE,

∴設(shè)DE=x,則AC=2 x,

則AC2﹣AD2=ADDE,

期(2 x)2﹣AD2=ADx,

整理得:AD2+ADx﹣20x2=0,

解得:AD=4x或﹣4.5x(負數(shù)舍去),

則DC= =2x,

故tan∠ABD=tan∠ACD= =2.


【解析】(1)直接利用圓周角定理得出∠CDE的度數(shù);(2)直接利用直角三角形的性質(zhì)結(jié)合等腰三角形的性質(zhì)得出∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,進而得出答案;(3)利用相似三角形的性質(zhì)結(jié)合勾股定理表示出AD,DC的長,再利用圓周角定理得出tan∠ABD的值.此題主要考查了圓的綜合以及切線的判定、相似三角形的判定與性質(zhì)、勾股定理等知識,根據(jù)題意表示出AD,DC的長是解題關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格中,每個小正方形的邊長都是單位1,△ABC在平面直角坐標系中的位置如圖.

(1)畫出將△ABC向右平移2個單位得到△A1B1C1
(2)畫出將△ABC繞點O順時針方向旋轉(zhuǎn)90°得到的△A2B2C2;
(3)求△A1B1C1與△A2B2C2重合部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,二次函數(shù)y=ax2+bx的圖象過點A(﹣1,3),頂點B的橫坐標為1.

(1)求這個二次函數(shù)的表達式;
(2)點P在該二次函數(shù)的圖象上,點Q在x軸上,若以A、B、P、Q為頂點的四邊形是平行四邊形,求點P的坐標;
(3)如圖3,一次函數(shù)y=kx(k>0)的圖象與該二次函數(shù)的圖象交于O、C兩點,點T為該二次函數(shù)圖象上位于直線OC下方的動點,過點T作直線TM⊥OC,垂足為點M,且M在線段OC上(不與O、C重合),過點T作直線TN∥y軸交OC于點N.若在點T運動的過程中, 為常數(shù),試確定k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)興趣小組研究我國古代《算法統(tǒng)宗》里這樣一首詩:我問開店李三公,眾客都來到店中,一房七客多七客,一房九客一房空.詩中后兩句的意思是:如果每一間客房住7人,那么有7人無房可;如果每一間客房住9人,那么就空出一間房.
(1)求該店有客房多少間?房客多少人?
(2)假設(shè)店主李三公將客房進行改造后,房間數(shù)大大增加.每間客房收費20錢,且每間客房最多入住4人,一次性定客房18間以上(含18間),房費按8折優(yōu)惠.若詩中“眾客”再次一起入住,他們?nèi)绾斡喎扛纤悖?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+c(b>a>0)與x軸最多有一個交點,現(xiàn)有以下四個結(jié)論:
①該拋物線的對稱軸在y軸左側(cè);
②關(guān)于x的方程ax2+bx+c+2=0無實數(shù)根;
③a﹣b+c≥0;
的最小值為3.
其中,正確結(jié)論的個數(shù)為( 。
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一段筆直的公路AC長20千米,途中有一處休息點B,AB長15千米,甲、乙兩名長跑愛好者同時從點A出發(fā),甲以15千米/時的速度勻速跑至點B,原地休息半小時后,再以10千米/時的速度勻速跑至終點C;乙以12千米/時的速度勻速跑至終點C,下列選項中,能正確反映甲、乙兩人出發(fā)后2小時內(nèi)運動路程y(千米)與時間x(小時)函數(shù)關(guān)系的圖象是( 。
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一袋中裝有形狀大小都相同的四個小球,每個小球上各標有一個數(shù)字,分別是1,4,7,8.現(xiàn)規(guī)定從袋中任取一個小球,對應(yīng)的數(shù)字作為一個兩位數(shù)的個位數(shù);然后將小球放回袋中并攪拌均勻,再任取一個小球,對應(yīng)的數(shù)字作為這個兩位數(shù)的十位數(shù).
(1)寫出按上述規(guī)定得到所有可能的兩位數(shù);
(2)從這些兩位數(shù)中任取一個,求其算術(shù)平方根大于4且小于7的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,立方體的六個面上標著連續(xù)的整數(shù),若相對的兩個面上所標之?dāng)?shù)的和相等.則這六個數(shù)的和為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=2x﹣2與x軸交于點A,與y軸交于點B.點C是該直線上不同于B的點,且CA=AB.

(1)寫出A、B兩點坐標;

(2)過動點P(m,0)且垂直于x軸的直線與直線AB交于點D,若點D不在線段BC上,求m的取值范圍;

(3)若直線BE與直線AB所夾銳角為45°,請直接寫出直線BE的函數(shù)解析式.

查看答案和解析>>

同步練習(xí)冊答案