【題目】如圖,已知直線PA交O于A、B兩點,AE是O的直徑,點C為O上一點,且AC平分PAE,過C作CDPA,垂足為D.

(1)求證:CD為O的切線;

(2)若DC+DA=6,⊙O的直徑為10,求AB的長度.

【答案】(1)證明見解析(2)6

【解析】分析:1)連接OC,根據(jù)題意可證得∠CAD+DCA=90°,再根據(jù)角平分線的性質,得∠DCO=90°,則CD O的切線;

2)過OOFAB,則∠OCD=CDA=OFD=90°,得四邊形OCDF為矩形,設AD=x,在RtAOF中,由勾股定理得(5-x +6-x =25,從而求得x的值,由勾股定理得出AB的長.

本題解析

(1)證明:連接OC,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠PAE,

∴∠DAC=∠CAO,∴∠DAC=∠OCA,∴PB∥OC,∵CD⊥PA,

∴CD⊥OC,CO為O半徑,∴CD為O的切線;

(2)過O作OF⊥AB,垂足為F,∴∠OCD=∠CDA=∠OFD=90,∴四邊形DCOF為矩形,∴OC=FD,OF=CD.∵DC+DA=6,設AD=x,則OF=CD=6x,∵O的直徑為10,∴DF=OC=5,∴AF=5x,

在Rt△AOF中,由勾股定理得AF +OF=OA.

即(5x) +(6x) =25,化簡得x11x+18=0,

解得 .

∵CD=6x大于0,故x=9舍去,∴x=2,從而AD=2,AF=52=3,

∵OF⊥AB,由垂徑定理知,F(xiàn)為AB的中點,∴AB=2AF=6.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一個三位數(shù),個位、十位上的數(shù)的和比百位上的數(shù)小 2,十位上的數(shù)的 3 倍比百位、個位上的數(shù)的和大 4,且個位、十位、百位上的數(shù)的和是 8,則這個三位數(shù)是_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程x22x+k=0

1)若方程有實數(shù)根,求k的取值范圍;

2)如果k是滿足條件的最大的整數(shù),且方程x22x+k=0一根的相反數(shù)是一元二次方程(m1x23mx7=0的一個根,求m的值及這個方程的另一根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】張明暑假期間參加社會實踐活動,從某批發(fā)市場以批發(fā)價每個m元的價格購進100個手機充電寶,然后每個加價n元到市場出售.

1)求售出100個手機充電寶的總售價為多少元(結果用含mn的式子表示)?

2)由于開學臨近,張明在成功售出60個充電寶后,決定將剩余充電寶按售價8折出售,并很快全部售完.

①她的總銷售額是多少元?

②相比不采取降價銷售,她將比實際銷售多盈利多少元(結果用含m、n的式子表示)?

③若m=2n,張明實際銷售完這批充電寶的利潤率為  (利潤率=利潤÷進價×100%)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A=∠B,AE=BE,點DAC邊上,∠1=∠2AEBD相交于點O

1)求證:AECBED;

2)若∠1=42°,求BDE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸交于A、B兩點,與y軸交于點C,點O為坐標原點,點D為拋物線的頂點,點E在拋物線上,點Fx軸上,四邊形OCEF為矩形,且OF=2,EF=3,

1)求拋物線所對應的函數(shù)解析式;

2)求ABD的面積;

3)將AOC繞點C逆時針旋轉90°,點A對應點為點G,問點G是否在該拋物線上?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某電腦經(jīng)銷商計劃購進一批電腦機箱和液晶顯示器,若購電腦機箱10臺和液液晶顯示器8臺,共需要資金7000元;若購進電腦機箱2臺和液示器5臺,共需要資金4120元.

1)每臺電腦機箱、液晶顯示器的進價各是多少元?

2)該經(jīng)銷商購進這兩種商品共50臺,而可用于購買這兩種商品的資金不超過22240元.根據(jù)市場行情,銷售電腦機箱、液晶顯示器一臺分別可獲利10元和160元.該經(jīng)銷商希望銷售完這兩種商品,所獲利潤不少于4100元.試問:該經(jīng)銷商有哪幾種進貨方案?哪種方案獲利最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形中,平分交線段于點E, .

(1)判斷是否平行,并說明理由.

(2)時,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是一個照相機成像的示意圖,像高MN,景物高度AB、

CD為水平視線,根據(jù)物體成像原理知:AB∥MN,CD⊥MN.

(1)如果像高MN35mm,焦距CL50mm,拍攝的景物高度AB4.9m,拍攝點離景物的距離LD是多少?

(2)如果要完整的拍攝高度是2m的景物,拍攝點離景物有4m,像高不變,則相機的焦距應調整為多少毫米?

查看答案和解析>>

同步練習冊答案